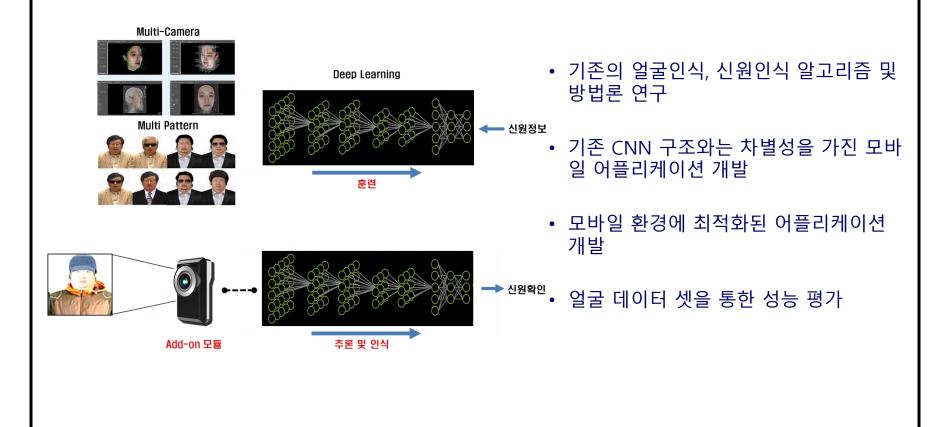

독립트랙 - BIRA 하드웨어 설계 (지도교수: 강성호)


- Built-in Redundancy Analysis (BIRA) 하드웨어 설계
 - 메모리를 자체적으로 수리할 수 있는 최적화된 하드웨어 개발
 - 메모리를 자체적으로 수리할 수 있는 기존의 하드웨어 연구
 - 기존의 수리 하드웨어 설계 및 구현
 - 기존의 수리 하드웨어에 대한 문제점 및 개선 방안 분석
 - 개선된 수리 하드웨어를 제안하고 이에 대한 설계 및 구현 진행

협력트랙 – Wearable SW 설계 (지도교수: 강성호)

- 신원인식 소프트웨어 개발
 - 모바일 환경에서 신원인식을 진행할 수 있는 최적화된 어플리케이션 개발

독립트랙 (지도교수: 김동구)

- ❖ 연구 목표 1: 차량에 특화된 5G 28 Ghz mmWave 렌즈안테나 다중 DoA 추정 알고 리즘 개발
 - mmWave 채널 환경에 적합한 통신 기술로 위치기반 빔포밍 기술이 최근 큰 주목을 받음
 - 기존 ULA의 고 복잡도에 비해서, 렌즈 안테나 기반 저복잡도 DoA 추정 알고리즘 개발이 필요

❖ 연구 내용

- mmWave 통신 환경의 이해 , MIMO 및 다중안테나 위치 추정 기술
- 렌즈 안테나 특화 다중 DoA 추정 알고리즘 개발 및 기존 기술과 성능 비교

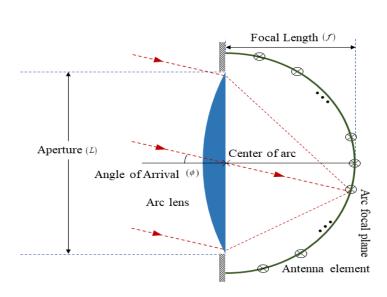


그림 1. 렌즈 안테나 구조

그림 2. 평면 렌즈 MIMO 시제품

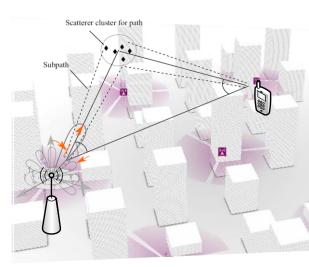


그림 2. mmWave 채널 환경

Smart firefighting with UAVs 독립트랙(지도교수: 김성륜)

VONSEI – SONGDO CAMPUS

Fire engine – drone comm.
Inter-drone comm.
SG comm.
Air route to fire spot

Fire engine side

Image & video processing results

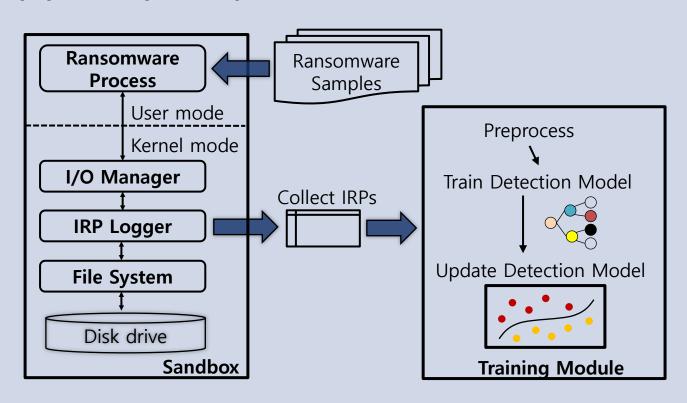
Visual & Navigate info

Fire area image to process

한-EU 공동연구 시나리오

- 이동체(드론)에서의 네트워크 연구 (스마트 소방 시나리오를 중심으로)
- Network research for moving objects (with the focus on smart firefighting)
- 드론 관련 소프트웨어 개발 (자율 주행, 관제 센터, 시뮬레이터)
- UAV related software development (autopilot, control station, simulator)
- 저지연 네트워크 연구, 스트리밍 성능 향상 연구
- Low latency and network streaming (TCP congestion control, video codecs)
- 한-EU 5G PriMO 공동 연구 과제 참여 기회
- You may contribute in EU-K 5G PriMO (virtual Presence in Moving Objects) project.

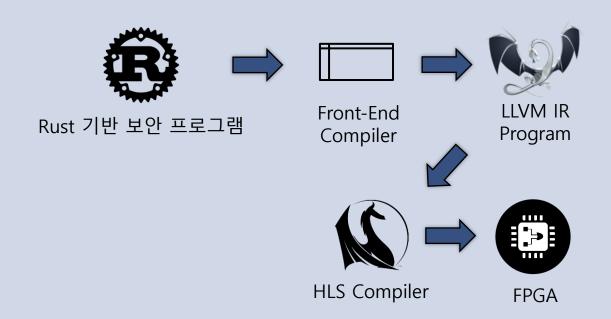
Contact if interested in: UAVs, virtual presence, mobile networks, low latency network, and some serious fun ©



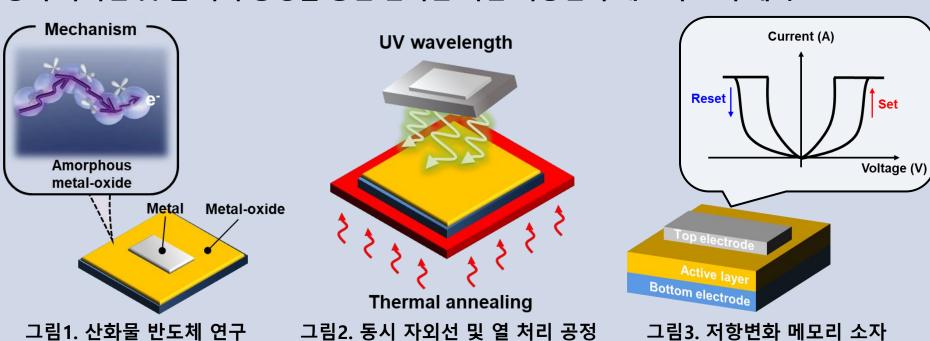
Ground Control Station (server)

독립트랙 (지도교수: 김한준)

랜섬웨어 검출 시스템 연구


- 샘플 프로그램을 통한 I/O Request Packets 수집
- 랜섬웨어 검출을 위한 학습 모델 생성
- 랜섬웨어 검출 시스템 개발

독립트랙 (지도교수: 김한준)


High Level Synthesis 연구

- 보안 기술 및 LLVM Compiler 학습 및 분석
- High Level Synthesis (HLS) 기법 학습 및 분석
- Rust 기반 Front-end compiler 개발 및 HLS 최적화

독립트랙 (지도교수: 김현재)

동시 자외선 및 열 처리 공정을 통한 산화물 기반 저항변화 메모리 소자 제작

- 산화물 반도체에 대한 원리 이해
- 동시 자외선 및 열 처리 공정을 이용한 산화물 반도체 박막 형성에 대한 연구
- 산화물 기반 저항변화 메모리 소자 제작 및 금속 물질 변경에 따른 메모리 특성 변화 연구

독립트랙 (지도교수: 박정욱)

전기자동차의 필요성 및 전력 수요 예측

연구 내용

우리나라를 포함한 전 세계 195개국은 파리 기후협약으로 인하여 의무적으로 온실가스를 감축 하여야 하며 우리 나 라는 '30년 배출 전망치 대비 37%를 감축 하는 것을 목표 로 설정 하였다. 이에 정부는 온실가스 배출량이 가장 큰 분야인 에너지와 수송 분야를 개선하기 위해 전기 자동차 및 전기 자동차 충전 설비 시장을 지속적으로 성장 시키고 있다.

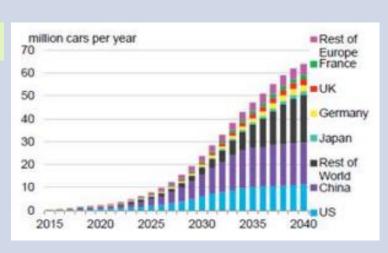


그림 1. 글로벌 연간 전기차 판매량

연구 목표

이에 따라 본 연구는 전기자동차의 수요 예측을 매트랩을 이용하여 Bass의 확산모형, ARIMA, ARIMAX, GARCH등의 모델링으로 분석 한 후 기존 내연 기관 자동차를 전기자동차로 대체 함에 따라 얻게 될 이점(환경비용, 휘발유 단가 대비 전기료)들을 목적 함수로 세워 분석 할 것이다.

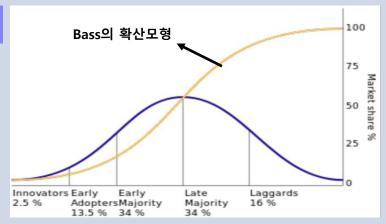


그림 2. 수요 예측 예시

독립트랙 (지도교수: 손광훈)

멀티스펙트랄 위성영상 기반 물체 검출

위성 영상을 이용한 물체 검출 알고리즘

그림 1. 위성 영상의 사물 검출 결과

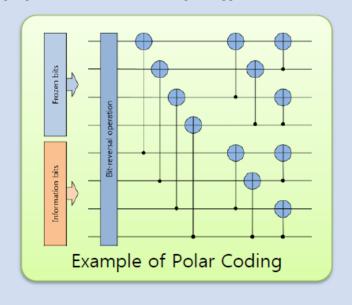
- 그림 1과 같이 위성에서 촬영된 영상에 서 사물을 검출하는 알고리즘 개발
- 최신의 Deep Learning 기술을 이용한 검출 알고리즘 개발함
- 물체 검출 정확도를 높이기 위한 최적 의 멀티스펙트랄 정보 융합 기술에 대 하여 연구함
- AI 기반 위성영상 물체인식 기술경진대 회 참가 목표

독립트랙 (지도교수: 손광훈)

Deep Convolutional Neural Networks을 이용한 사람의 자세 추정 연구

단일 RGB 영상을 통한 사람의 자세 추정

그림 1. 사람의 자세 추정 알고리즘

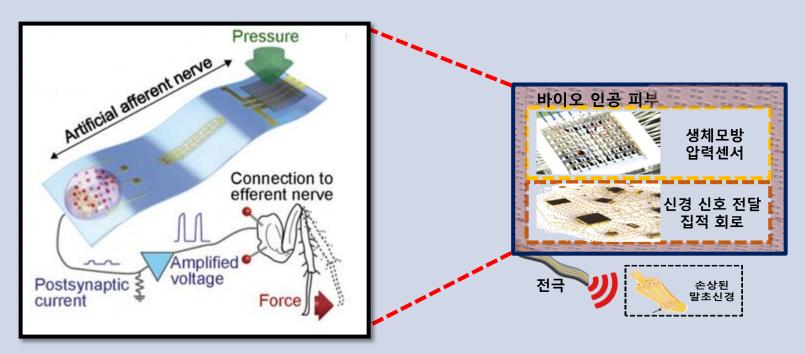

그림 2. Microsoft Kinect Camera

- 기존 Microsoft Kinect 카메라를 통한 사람의 자세 추정 알고리즘은 정확도를 위해 RGB 영상 및 IR 영상을 융합하여 사용함
- 이와 같은 성능의 결과를 단일 RGB 영상만을 이용하여 얻어내기 위해 Deep Convolutional Neural Networks 를 Training 시키는 방안 에 대하여 연구함
- 학습된 Deep Convolutional Neural Networks를 통해 단일 RGB 영상에 서 정확한 사람의 자세를 추정함

독립트랙 (지도교수 : 송흥엽)

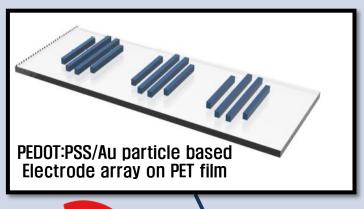
Polar Codes

- 최근 5세대 이동통신의 오류정정부호 표준 기술로 polar codes 가 확정되었다.
- Polar codes는 이론적으로 channel 용량을 달성하는 최초의 오류정정부호이다.
- 최근 다양한 연구로, 실제 이동통신 환경에서도 훌륭한 오류 정정 성능을 보인다.
- 아직도 Decoding Algorithm의 성능 향상은 가장 뜨거운 주제다.
- 이러한 Polar Codes의 오류 정정 성능을 컴퓨터 시뮬레이션을 통해 확인하고자 한다.



독립트랙 (지도교수: 유기준)

- 인체이식형 촉각기능 스마트 바이오닉 피부 개발


화상등으로 인한 심각한 피부 손상 시 피부의 촉각기능을 대체하기 위한 촉각 신경 인터페이싱 전극 소재 및 신호 전달 기술 개발

- 생체집적 압력센서 개발
- 압력센서에서 전달된 신호를 신경자극으로 전달하는 회로 시스템 개발
- 자극 강도에 따라 다른 신경자극 신호 모니터링

독립트랙 (지도교수: 유기준)

- PEDOT:PSS/Au particle composite을 이용한 초고 신호대잡음비의 Neural recording용 투명 전극 제작 초고해상도 신경활동 측정 시 필수적인 low impedance 전극의 필요성 및 뇌의 광학적 특성 및 전기적 특성 동시 모니터링이 가능한 임플란터블 ECoG 센서 개발의 필요성

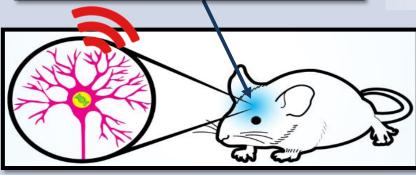
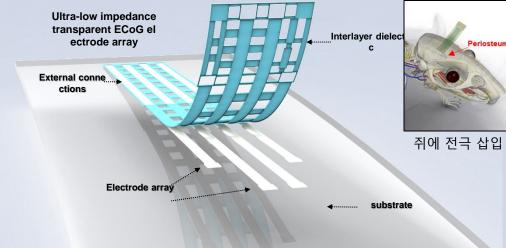



그림1) Conductive polymer/metal particle

- 그림과 같은 구조를 지닌 형태의 패시브 플렉서 블 소자 제작
- 기존의 실리콘 기반 photolithography 기법 외의 molding 기법을 통한 polymer/metal particle 혼합 membrane 이용
- 제작된 전극과 기존 organic 전극과의 특정 주파수에서 임피던스 비교

전극과 활용 예시

BPSO 알고리즘을 이용한 주파수 선택적 표면 (Frequency Selective Surface) 설계

- 주기적으로 반복되는 패턴을 이용하여 특정 주파수 대역만 투과하는 FSS 설계
- 설계의 자유도 확보를 위해 BPSO 알고리즘을 이용한 pixel-type FSS 설계
- 유전체가 적용된 FSS 구조의 최적화 시뮬레이션 개발 및 측정을 통한 교차검증

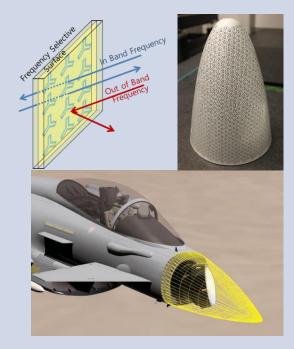


그림 1. FSS 개념 및 레이돔 적용 사례

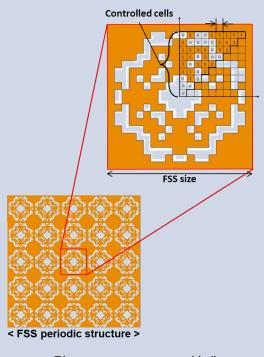
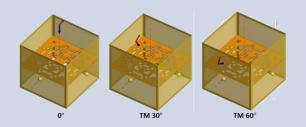



그림 2. pixel-type FSS 설계

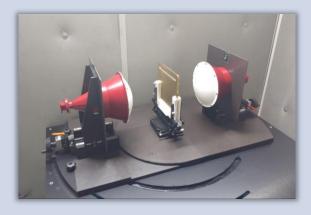
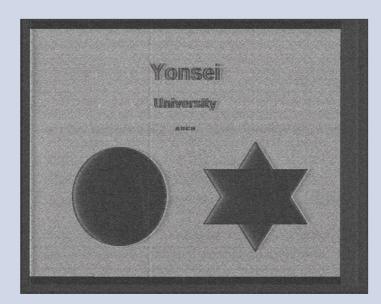
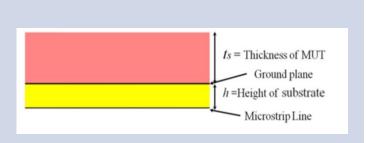


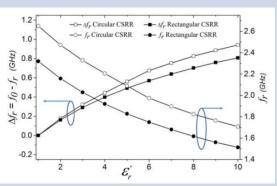
그림 3. FSS 최적화 시뮬레이션과 측정

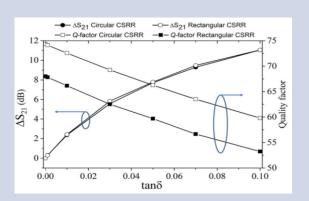
모니터 누설 전자파를 이용한 실시간 화면 정보 복원 시스템 구축

모니터 누설 전자파에 화면 정보가 포함되어 있다는 사실에서 출발




그림 1. 누설 전자파를 이용한 정보 복원 화면

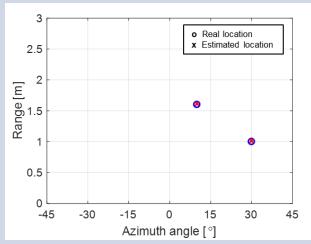

- 컴퓨터 모니터에는 디스플레이 하기 위한 화면 정보가 담긴 비디오 신호가 전송된다.
- 이 신호로부터 누설 전자파가 발생 되며, 화면 정보를 포함하고 있다.
- 이 누설 전자파를 수신하여 여러 가지 신호 처리 기법을 적용하여 다시 화면으로 복원하면 그림 1.과 같은 결과를 얻을 수 있다.
- 신호 복원 과정을 실시간으로 활용 할 수 있는 복원 시스템 구축이 필 요하다.

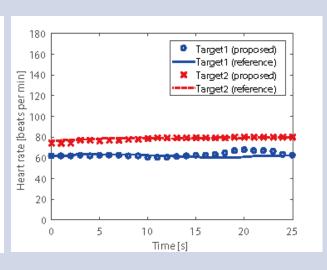

비접촉식 액체 구별 센서

마이크로웨이브 공진기를 이용하여 물질의 유전율, 손실 탄젠트를 추출함

- 반사계수(S_{11})를 이용하여 1-50 GHz 대역의 복소 유전율 추출
- 물질 특성 검출을 위한 마이크로웨이브 공진기 설계 및 특성 측정
- 설계한 공진기를 이용하여 임의의 물질의 복소 유전율 검출



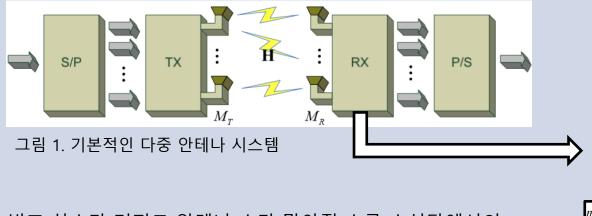



여러 사람에 대한 비접촉식 생체 신호 검출

여러 사람이 인접해 있는 상황에서 각 개인에 대한 생체 신호를 검출하고자 함

- 다양한 각도, 거리에 있는 사람에 대한 위치 정보 및 생체 신호 검출
- 각 개인에 대한 생체 신호의 실시간 모니터링 구현
- 인접한 2명에 대한 객체 구분 및 생체 신호 분리 검출

독립트랙 (지도교수: 이승아)


Lensfree computational camera 구현

Patient monitoring을 위한 lensfree camera 구현

- Raspberry pi 카메라를 개조하여 렌즈를 사용하지 않는 초소형 카메라를 만들고 새로운 image reconstruction 기법을 개발
- 개발한 lensfree camera를 사용하여 pose estimation이나 remote respiration detection 의 가능성을 확인
- 자세한 내용은 http://biomedia.yonsei.ac.kr/internship 에서 확인 가능

독립트랙 (지도교수: 최수용)

1. Metaheuristic 알고리즘을 이용한 다중 안테나 심볼 검출

- 변조 차수가 커지고 안테나 수가 많아질 수록 수신단에서의 송신 심볼 검출이 힘들어짐
- Maximum likelihood(ML) 기법은 optimal한 성능을 보이지 만 복잡도가 높아 사용이 불가능하며, 기존에 사용되는 기법 은 복잡도는 낮지만 성능이 낮음
- 따라서 metaheuristic 알고리즘을 이용하여 ML보다 낮은 복 잡도를 가지면서 성능은 optimal에 가깝게 도출하는 심볼 검 출 기법에 대한 연구를 진행함

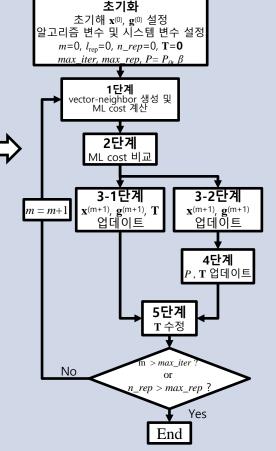
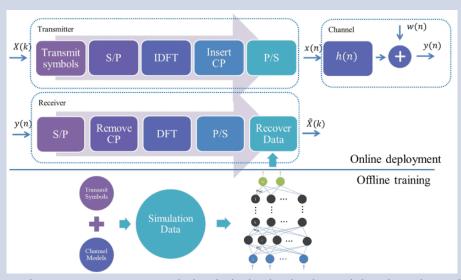
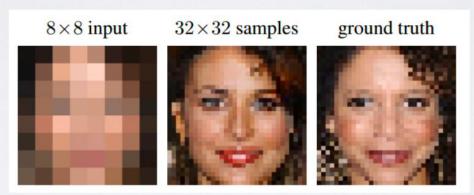


그림 2. Metaheuristic 알고리즘 순서도

독립트랙 (지도교수: 최수용)

2. Deep learning을 이용한 OFDM 시스템에서의 채널 추정 및 심볼 검출

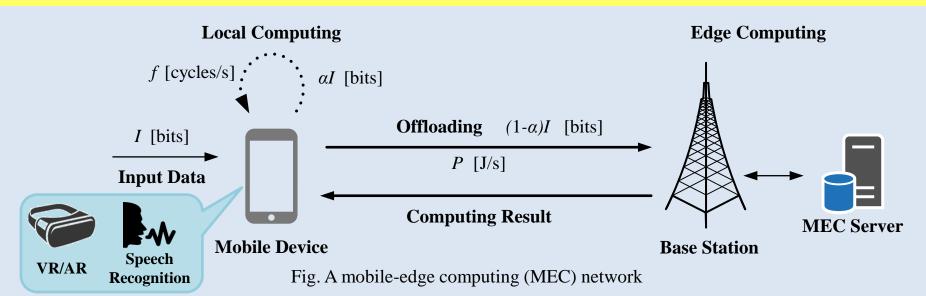



그림 3. Deep learning 기반 채널 추정 및 심볼 검출 시스템 모델

- 통신 시스템에서 채널 정보는 신호 복원을 위해 반드시 필요함
- 통상적으로 OFDM 시스템에서는 미리 정한 pilot 신호를 통해 채널을 추정하게 되고, 추정한 채널을 바탕으로 심볼을 검출함
- 따라서 deep learning을 이용하여 OFDM 시스템에서 pilot을 통한 채널 추정과 심볼 검출을 동시에 수행하는 기법에 대해 연구를 진행함

Super-Resolution Imaging

독립트랙 (지도교수: 함범섭, https://bsham.github.io/)


The figure shows image super-resolution results using deep convolutional networks:
 Given low-resolution images, we aim at increasing their spatial resolution.
 What we will be doing is to propose and implement novel CNN architectures
 for super-resolution and to compare the performance of them with SOTA.

- Requirements:
 - EEE3314 Introduction to Artificial Intelligence.
 - Linear Algebra, Calculus, Probability Theory.
 - · Python.
 - Experience in Matlab, C/C++, Git and CSS is plus.

독립트랙 (지도교수: 황태원)

연구 주제: Mobile-Edge Computing (MEC)

연구 내용

- 최근 AR/VR, 실시간 게임 등의 computation-intensive한 어플리케이션에 대한 모바일 사용자들의 요구가 증가하고 있으나 모바일 디바이스가 이러한 요구를 수용하기에는 에너지와 계산능력에 한계가 있다.
- <u>Mobile-edge computing</u> 기술은 계산의 일부를 계산 능력이 뛰어난 기지국에 오프로딩하여 대신 처리하게 함으로써 디바이스의 효율적 어플리케이션 구동을 도와준다.
- Question: 디바이스의 에너지 소비량 및 지연시간을 최소 화하기 위한 최적의 오프로딩, 송신전력 할당, CPU frequency 할당 기법은 무엇인가?

연구 계획

- 1) Mobile-edge computing network에서의 오 프로딩, 업링크 송신전력, CPU frequency 최적화를 통한 에너지 및 지연시간 최소화 문제 설정
- 2) 관련 지식 습득 및 수식 유도
- 3) Simulation (Matlab) 을 통한 성능 검증