Redistribution and the Monetary-Fiscal Policy Mix

Saroj Bhattarai UT Austin Jae Won Lee Seoul National University Choongryul Yang Federal Reserve Board

Yonsei University Seminar October 6, 2021

The views expressed in this presentation are solely our own and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any person associated with the Federal Reserve System.

Motivation

- Two worst post-war US contractions—the Great Recession and the COVID recession
- Fiscal policy responses included significant *transfer* components
 - The American Recovery and Reinvestment (ARRA) Act of 2009
 - The Coronavirus Aid, Relief, and Economic Security (CARES) Act of 2020
- Renewed interest in the effectiveness of transfer policies for rebooting the economy
- Ongoing debates on the rapid increase in *public debt* and *inflationary pressures*
- The large-scale transfer programs eventually require *fiscal and/or monetary adjustments* to finance them

Questions

- What are the macroeconomic effects of redistribution policies that transfer resources from the *unconstrained* to the *constrained*?
- What are the determinants of the transfer multiplier?
- What are the welfare implications of such redistribution policies?

This Paper

- Focus on the source of financing and its role in effectiveness of redistribution
- A transfer policy redistributes resources toward "hand-to-mouth" households and away from "Ricardian" households that own government bonds
- Two distinct ways to finance transfers

This Paper

- Focus on the source of financing and its role in effectiveness of redistribution
- A transfer policy redistributes resources toward "hand-to-mouth" households and away from "Ricardian" households that own government bonds
- Two distinct ways to finance transfers
 - **Conventional tax financed transfers:** Under the *monetary regime*, the government raises taxes and inflation is then stabilized in the usual way by the central bank

This Paper

- Focus on the source of financing and its role in effectiveness of redistribution
- A transfer policy redistributes resources toward "hand-to-mouth" households and away from "Ricardian" households that own government bonds
- Two distinct ways to finance transfers
 - **Conventional tax financed transfers:** Under the *monetary regime*, the government raises taxes and inflation is then stabilized in the usual way by the central bank
 - Inflation tax financed transfers: Under the *fiscal regime*, the government commits itself to no adjustments in taxes, and the central bank allows inflation to rise to stabilize the real value of debt

Preview of Results

- In an analytical two-agent model show:
 - A transfer policy generates *greater and more persistent* inflation under the fiscal regime than under the monetary regime
 - Direct channel
 - Interest rate channel: valuation effect on government debt due to changes in the real rate

Preview of Results

- In an analytical two-agent model show:
 - A transfer policy generates *greater and more persistent* inflation under the fiscal regime than under the monetary regime
 - Direct channel
 - Interest rate channel: valuation effect on government debt due to changes in the real rate
- In a quantitative two-sector TANK model applied to the COVID recession and the CARES Act show:
 - Inflation-financed transfers lead to high output and consumption multipliers
 - The welfare of both household types is higher under the fiscal regime
 - Inflation-financed transfers can lead a Pareto improvement relative to no-transfer case

Related Literature

- The fiscal-monetary interactions literature (no TANK model)
 - Leeper (1991), Sims (1994), Woodford (1994), Cochrane (2001)
 - Analytical characterization in a linearized model: Bhattarai, Lee and Park (2014)
- Two-agent models (no fiscal regime)
 - Galí, López-Salido and Vallés (2007), Bilbiie (2018)
 - Transfer multipliers in a TANK model : Bilbiie et al. (2013)
- Macroeconomic effects of the COVID crisis (no fiscal regime)
 - Two-sector, two-agent model: Guerrieri, Lorenzoni, Straub and Werning (2020)
 - Effects of fiscal policy during the pandemic using a model with household heterogeneity: Faria-e-Castro (2021), Bayer, Born, Luetticke and Müller (2020)
- Monetary-fiscal policy interactions in TANK models (no transfer policy analysis)
 - Bhattarai, Lee, Park and Yang (2020), Bianchi, Faccini and Melosi (2020)

Outline

Simple Model

- 2 Quantitative Model
- ③ Data and Calibration
- ④ Quantitative Results

⑤ Conclusion

Simple Model

- Two types of households: Ricardian and Hand-To-Mouth.
 - Ricardian household makes optimal labor supply and consumption/savings decisions
 - HTM household simply consumes government transfers every period
- Ricardian households, of measure 1λ , choose $\{C_t^R, L_t^R, B_t^R\}$ to maximize

$$\sum_{t=0}^{\infty} \beta^t \left[\log C_t^R - \chi \frac{\left(L_t^R\right)^{1+\varphi}}{1+\varphi} \right]$$

subject to a sequence of flow budget constraints

$$C_t^R + b_t^R = R_{t-1} \frac{1}{\Pi_t} b_{t-1}^R + w_t L_t^R + \Psi_t^R - \tau_t^R,$$

where $b_t^R = \frac{B_t^R}{P_t}$ is the real value of nominal debt and $\Pi_t = \frac{P_t}{P_{t-1}}$ is inflation

Ricardian Households

• Optimality conditions:

$$\begin{split} & \frac{C_{t+1}^R}{C_t^R} = \beta \frac{R_t}{\Pi_{t+1}}, & \text{(Euler equation)} \\ & \chi \left(L_t^R \right)^{\varphi} C_t^R = w_t, & \text{(Intra-temporal labor supply)} \\ & \lim_{t \to \infty} \left[\beta^t \frac{1}{C_t^R} \left(\frac{B_t^R}{P_t} \right) \right] = 0. & \text{(Transversality condition)} \end{split}$$

- The labor supply condition captures transmission of transfer policy
- The Euler equation captures the new interest rate channel
- How the TVC is satisfied will be key to distinguishing the monetary vs. fiscal regimes
- Lump-sum taxes in this simple model and so no distortions in the optimality conditions

Hand-to-Mouth (HTM) Households and Firms

• HTM households, of measure λ , consume government transfers, s_t^H , every period

$$C_t^H = s_t^H$$

• A representative firm in the competitive market chooses hours, *L*_t, to maximize profits:

$$\Psi_t = Y_t - w_t L_t,$$

subject to the production function

$$Y_t = L_t$$

Government

• Government budget constraint (GBC) is

$$b_t = \frac{R_{t-1}}{\Pi_t} b_{t-1} - \tau_t + s_t,$$
 (GBC)

where $b_t = \frac{B_t}{P_t}$ is the real value of nominal debt, s_t is transfers, and τ_t is taxes

• Transfer, s_t , is exogenous and deterministic

Government

• Government budget constraint (GBC) is

$$b_t = \frac{R_{t-1}}{\Pi_t} b_{t-1} - \tau_t + s_t,$$
 (GBC)

where $b_t = \frac{B_t}{P_t}$ is the real value of nominal debt, s_t is transfers, and τ_t is taxes

- Transfer, s_t , is exogenous and deterministic
- Monetary and tax policy rules are

 $\frac{R_t}{\bar{R}} = \left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\phi},$ (Monetary policy rule) $(\tau_t - \bar{\tau}) = \psi(b_{t-1} - \bar{b}),$ (Tax policy rule)

where ϕ and ψ are the feedback policy parameters that will govern the regimes

Aggregation and the Resource Constraint

• Combining household and government budget constraints gives:

$$(1-\lambda)C_t^R + \lambda C_t^H = Y_t$$

• Output is simply divided between the two types of households as:

$$\begin{aligned} C_t^H &= \frac{1}{\lambda} s_t, \\ C_t^R &= \frac{1}{1-\lambda} Y_t - \frac{1}{1-\lambda} s_t. \end{aligned}$$

• Output is endogenous

Effects of Redistribution Policy–Output and Consumption

• We derive output as a function of transfers: $Y_t = Y(s_t)$

$$Y_t = \chi^{-1} (1 - \lambda)^{1 + \varphi} Y_t^{-\varphi} + s_t$$

• The "transfer multiplier" is

$$\frac{dY(s_t)}{ds_t} = \frac{1}{1 + (1 - \lambda)^{1 + \varphi} \frac{\varphi}{\chi} Y_t^{-(1 + \varphi)}} \in [0, 1]$$
 (Classical labor supply channel)

• The Ricardian consumption response:

$$\frac{dC^{R}\left(s_{t}\right)}{ds_{t}} = \frac{1}{1-\lambda} \left[\frac{dY\left(s_{t}\right)}{ds_{t}} - 1 \right] \leq 0$$
 (Key for interest rate channel)

• The alternative policy regimes have no differential effect on output and consumption

Effects of Redistribution Policy–Inflation

• Equilibrium path $\{\Pi_t, R_t, b_t, \tau_t\}$ satisfies TVC and the following:

$$\begin{pmatrix} \overline{\Pi}_{t+1} \\ \overline{\Pi} \end{pmatrix} = \frac{C_t^R}{C_{t+1}^R} \left(\frac{\overline{\Pi}_t}{\overline{\Pi}} \right)^{\phi}, \qquad (\text{How } \overline{\Pi}_{t+1} \text{ depends on } \overline{\Pi}_t \text{ and the real rate})$$

$$(b_t - \overline{b}) = \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \psi \right] (b_{t-1} - \overline{b}) + (s_t - \overline{s}) + \overline{b} \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \beta^{-1} \right], \quad (\text{GBC: } t \ge 1)$$

$$(b_0 - \overline{b}) = \beta^{-1} \left(\frac{\overline{\Pi}}{\overline{\Pi}_0} - 1 \right) \overline{b} + (s_0 - \overline{s}). \qquad (\text{GBC: } t = 0)$$

Effects of Redistribution Policy–Inflation

• Equilibrium path $\{\Pi_t, R_t, b_t, \tau_t\}$ satisfies TVC and the following:

$$\begin{pmatrix} \overline{\Pi}_{t+1} \\ \overline{\Pi} \end{pmatrix} = \frac{C_t^R}{C_{t+1}^R} \left(\frac{\overline{\Pi}_t}{\overline{\Pi}} \right)^{\phi}, \qquad (\text{How } \Pi_{t+1} \text{ depends on } \Pi_t \text{ and the real rate})$$

$$(b_t - \overline{b}) = \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \psi \right] (b_{t-1} - \overline{b}) + (s_t - \overline{s}) + \overline{b} \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \beta^{-1} \right], \quad (\text{GBC: } t \ge 1)$$

$$(b_0 - \overline{b}) = \beta^{-1} \left(\frac{\overline{\Pi}}{\overline{\Pi}_0} - 1 \right) \overline{b} + (s_0 - \overline{s}). \qquad (\text{GBC: } t = 0)$$

• $s_t > \bar{s}$ until time period T, and then $s_t = \bar{s}$ for $t \ge T + 1$

Effects of Redistribution Policy–Inflation

• Equilibrium path $\{\Pi_t, R_t, b_t, \tau_t\}$ satisfies TVC and the following:

$$\begin{pmatrix} \Pi_{t+1} \\ \overline{\Pi} \end{pmatrix} = \frac{C_t^R}{C_{t+1}^R} \left(\frac{\Pi_t}{\overline{\Pi}} \right)^{\phi}, \qquad (\text{How } \Pi_{t+1} \text{ depends on } \Pi_t \text{ and the real rate})$$

$$(b_t - \overline{b}) = \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \psi \right] (b_{t-1} - \overline{b}) + (s_t - \overline{s}) + \overline{b} \left[\beta^{-1} \frac{C_t^R}{C_{t-1}^R} - \beta^{-1} \right], \quad (\text{GBC: } t \ge 1)$$

$$(b_0 - \overline{b}) = \beta^{-1} \left(\frac{\overline{\Pi}}{\Pi_0} - 1 \right) \overline{b} + (s_0 - \overline{s}). \qquad (\text{GBC: } t = 0)$$

- $s_t > \bar{s}$ until time period T, and then $s_t = \bar{s}$ for $t \ge T + 1$
- How TVC is satisfied *depends* on the fiscal policy parameter ψ
 - $\,\circ\,$ When $\psi>0,$ debt dynamics satisfies the TVC regardless of the value of b_{T+1}
 - When $\psi \leq 0$, the TVC requires $b_{T+1} = \overline{b}$, which can be achieved when monetary policy allows inflation to adjust by the required amount

Effects of Redistribution Policy–Inflation: Monetary Regime

- Under the *monetary regime*, $\psi > 0$ and $\phi > 1$
- Inflation for $t \ge T + 1$ becomes

$$\Pi_t = \bar{\Pi}, \quad \forall t \ge T+1$$

• Pin down Π_t from t = 0 to T along the saddle path and derive the initial inflation:

$$\frac{\Pi_{0}}{\bar{\Pi}} = C^{R}(\bar{s})^{\frac{1}{\phi^{T+1}}} \left[\frac{1}{C^{R}(s_{T})C^{R}(s_{T-1})\cdots C^{R}(s_{0})} \right]^{\frac{1}{\phi}} = \prod_{t=0}^{T} \left[\frac{C^{R}(\bar{s})}{C^{R}(s_{t})} \right]^{\frac{1}{\phi}}$$

- An increase in transfers is inflationary as $C^{R}(s_{t})$ declines below the pre-transfer level
- The effect is *transitory*: When the redistribution program ends, inflation returns immediately to the steady-state value

- Under the *fiscal regime*, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)

- Under the fiscal regime, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

- Under the *fiscal regime*, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

• For $b_1 = \overline{b}$, Π_0 adjusts:

$$\frac{\Pi_0}{\bar{\Pi}} = \frac{1}{1 - \frac{\beta}{b} \left(s_0 - \bar{s}\right) - \beta \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \psi\right]^{-1} \left[\beta^{-1} \frac{C^R(\bar{s})}{C^R(s_0)} - \beta^{-1}\right]}$$

- The redistribution policy is more inflationary under fiscal regime than monetary regime
- The one-time transitory increase in transfers has persistent effects on inflation

- Under the fiscal regime, $\psi \leq 0$ and $\phi < 1$
- A simple case: one-time transfer increase ($s_0 > \bar{s}$ and $s_t = \bar{s}$ afterwards)
 - TVC requires $b_1 = \overline{b}$ and the GBC at t = 1 implies:

$$b_{0} = \bar{b} - \bar{b} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi \right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1} \right]$$

• For
$$b_1 = \overline{b}$$
, Π_0 adjusts:

$$\frac{\Pi_{0}}{\bar{\Pi}} = \frac{1}{1 - \frac{\beta}{b} \left(s_{0} - \bar{s}\right) - \beta \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \psi\right]^{-1} \left[\beta^{-1} \frac{C^{R}(\bar{s})}{C^{R}(s_{0})} - \beta^{-1}\right]}$$

- The *interest rate channel* cause Π_0 to increase by *more* than it would in an analogous model with a representative household
- This term results from increased interest payments that exert an upward pressure on b_1 which is offset by a further decrease in b_0 , generated by a greater increase in Π_0

Summary so far

- More inflationary under fiscal regime than monetary regime
- Irrelevance of financing schemes for output, consumption and welfare
 - Flexible prices
 - No feedback from inflation to real variables
 - No Keynesian demand channel
 - Both types of taxes are non-distortionary
 - Lump-sum tax
 - Inflation tax
- Introduce several realistic features that break the uniformity of the two regimes in terms of the multipliers.

Outline

Simple Model

- **2** Quantitative Model
- ③ Data and Calibration
- ④ Quantitative Results

⑤ Conclusion

Quantitative Model

- A quantitative model with an application for the economic crisis induced by COVID
 - Transfer policy, as embedded in the CARES Act
- A two-sector production structure, sticky prices, and labor taxes
 - Two distinct sectors where the two types of households work
 - Sticky prices under Calvo friction
 - Distortionary labor taxes on the Ricardian household to finance transfers
- Analyze how the implications of increasing transfers to HTM households, hit disproportionately in the COVID crisis, depend on the monetary-fiscal policy mix

Ricardian Sector: Households

• Ricardian (R) households, of measure $1 - \lambda$, solve the problem

$$\max_{\{C_t^R, L_t^R, b_t^R\}} \sum_{t=0}^{\infty} \beta^t \exp(\eta_t^{\xi}) \left[\frac{\left(C_t^R\right)^{1-\sigma}}{1-\sigma} - \chi \frac{\left(L_t^R\right)^{1+\varphi}}{1+\varphi} \right]$$

subject to a sequence of flow budget constraints

$$C_t^R + b_t^R = R_{t-1} \frac{1}{\prod_t^R} b_{t-1}^R + (1 - \tau_{L,t}^R) w_t^R L_t^R + \Psi_t^R$$

- η_t^{ξ} is a discount factor shock; $\tau_{L,t}^R$ is labor tax
- C_t^R is a CES aggregator of the goods produced in the two sectors

$$C_t^R = \left[(\alpha)^{\frac{1}{\varepsilon}} \left(C_{R,t}^R \right)^{\frac{\varepsilon - 1}{\varepsilon}} + (1 - \alpha)^{\frac{1}{\varepsilon}} \left(\exp(\zeta_{H,t}) C_{H,t}^R \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

 $\circ \ \zeta_{H,t}$ is a demand shock that is specific for HTM goods

HTM Sector: Households

- HTM-households' labor endowment is exogenously fixed and can change with a shock
- In each period, they consume wage income and government transfers

$$C_t^H = w_t^H \overline{L^H} (1 + \eta_t^{\xi}) + s_t^H,$$

where η_t^{ξ} is HTM labor supply shock

• The aggregate consumption C_t^H is a CES aggregator of sector-specific goods

$$C_t^H = \left[(1 - \alpha)^{\frac{1}{\varepsilon}} \left(\exp\left(\zeta_{H,t}\right) C_{H,t}^H \right)^{\frac{\varepsilon - 1}{\varepsilon}} + (\alpha)^{\frac{1}{\varepsilon}} \left(C_{R,t}^H \right)^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

• $\zeta_{H,t}$ is a demand shock that is specific for HTM goods

Ricardian and HTM Sector: Firms

- Monopolistically competitive firms produce differentiated varieties
- The production function is linear (labor market is sector specific)
- Firms face a standard downward sloping demand curve
- Firms set prices according to the Calvo friction

Government

• The government (nominal) flow budget constraint is

$$B_t + T_t^L = R_{t-1}B_{t-1} + P_t^R s_t,$$

where T_t^L is tax revenues and s_t is exogenous and deterministic transfer

Monetary and tax policy rules are of the feedback types given by

$$\frac{R_t}{\bar{R}} = \max\left\{\frac{1}{\bar{R}}, \left(\frac{(1-\lambda)\Pi_t^R + \lambda\Pi_t^H}{\bar{\Pi}}\right)^{\phi}\right\}, \ \tau_{L,t}^R - \bar{\tau}_L^R = \psi_L(b_{t-1} - \bar{b}).$$

Government

• The government (nominal) flow budget constraint is

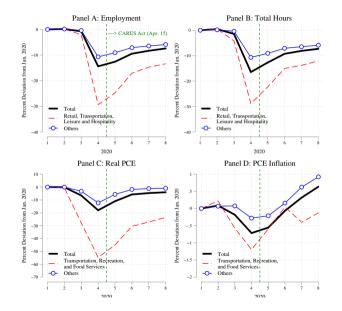
$$B_t + T_t^L = R_{t-1}B_{t-1} + P_t^R s_t,$$

where T_t^L is tax revenues and s_t is exogenous and deterministic transfer

Monetary and tax policy rules are of the feedback types given by

$$\frac{R_t}{\bar{R}} = \max\left\{\frac{1}{\bar{R}}, \left(\frac{(1-\lambda)\Pi_t^R + \lambda\Pi_t^H}{\bar{\Pi}}\right)^{\phi}\right\}, \ \tau_{L,t}^R - \bar{\tau}_L^R = \psi_L(b_{t-1} - \bar{b}).$$

- Monetary regime features high enough monetary (ϕ) and tax (ψ_L) rule coefficients
- Fiscal regime features low enough tax (ψ_L =0) and monetary (ϕ =0) rule coefficients


Outline

- Simple Model
- 2 Quantitative Model
- **3** Data and Calibration
- ④ Quantitative Results
- ⑤ Conclusion

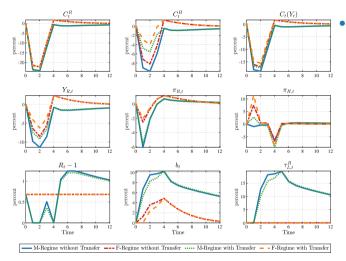
Data and Calibration

- Pick parameter values based on long-run averages or from the literature for the structural and policy parameters
- Calibrate the three shocks to match exactly employment and inflation dynamics during the COVID crisis (for six months)
- Decompose the U.S. economy into two sectors
 - HTM sector: transportation, recreation, and food service sector
 - Ricardian sector: the rest of the economy
- Calibrate the size of transfers using the amounts in CARES Act (3.4 percent of GDP)
 - \$293 billion to provide one-time tax rebates
 - \$268 billion to expand unemployment benefits
 - \$150 billion in transfers to state and local governments

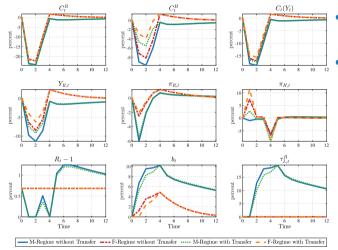
Sectoral Dynamics During Covid Crisis

Data and Calibration

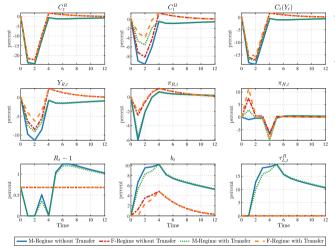
Data and Model Moments

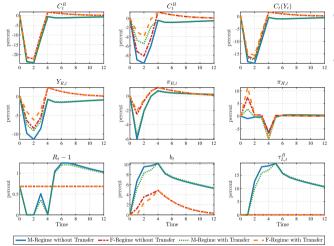

	Value	Description	Sources
House	eholds		
β	0.9932	Time preference	2-month frequency
σ	1.7	Inverse of EIS	Del Negro et al. (2015)
φ	2.2	Inverse of Frisch elasticity	Del Negro et al. (2015)
χ	94.6	Labor supply disutility parameter	Steady-state $\bar{L}^R = 0.3$
λ	0.23	Fraction of HTM households	Employment share of HTM sectors
α	0.72	Consumption weight on Ricardian goods	Consumer Expenditure Surveys data
Firms			
θ	6.0	Elasticity of substitution across firms	Steady-state markup: 20% (Hall, 2018)
ε	0.8	Elasticity of substitution between Ricardian and HTM goods	Assigned
ω^R	0.833	Calvo parameter for Ricardian sector	Del Negro et al. (2015)
ω^{H}	0.0	Calvo parameter for HTM sector	Assigned
Gover	mment		
$\frac{\overline{b}}{\overline{6Y}}$	0.509	Steady-state debt to GDP	Data (1990Q1-2020Q1)
$\frac{\bar{T}^L}{\bar{Y}}$	0.122	Steady-state labor tax revenue to GDP	Data (1990Q1-2020Q1)
$\frac{\bar{s}}{\bar{Y}}$	0.127	Steady-state transfers to GDP	Data (1990Q1-2020Q1)
	tary and Fiscal Policy Ru	les	
φ	(1.3, 0.0)	Interest rate response to inflation	Del Negro et al. (2015)
ψ_L	(0.4, 0.0)	Labor tax rate response to debt	Assigned
<u>Shock</u>	<u>s</u>		
η_t^H	(-17%, -19%, -13%)	Size of HTM labor supply shock	Total hours for HTM sectors
η_t^{ξ}	(-43%, -45%, -19%)	Size of discount factor shock	Total hours excluding HTM sectors
$\zeta_{H,t}$	(-23%, -19%, 0.01%)	Size of HTM sector demand shock	PCE Inflation for HTM sectors
s_t	26.8%	Size of transfer distribution	2020 CARES Act

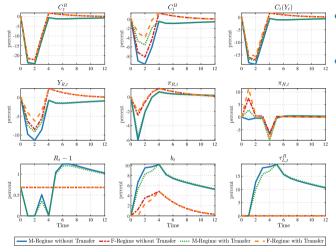
Outline


- Simple Model
- 2 Quantitative Model
- ③ Data and Calibration
- **4** Quantitative Results
- ⑤ Conclusion

Dynamic Effects of Transfer Policy


- Show how key variables evolve over time in response to the COVID shocks
- Illustrate the effects of an increase in transfers for the two regimes
- Four different scenarios
 - Monetary regime with and without transfers to the HTM-households
 - Fiscal regime with and without transfers to the HTM-households
- Duration of redistribution policy is three periods (six months), which coincides with the duration of the shocks


Short-run contractions in output and consumption and a decline in inflation


- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities
- ② Binding ZLB leads to a bigger drop in the monetary regime

- Short-run contractions in output and consumption and a decline in inflation
- Smaller contractions in output and consumption of both types in the *fiscal regime* than in the *monetary regime*
- Strong and persistent inflation ⇒
 Large expansionary effects on output due to nominal rigidities
- ② Binding ZLB leads to a bigger drop in the monetary regime
- ③ The redistribution program is more inflationary in the fiscal regime

	Monetary Regime					Fiscal F	Regime	
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.256	1.662	-0.211	6.059	3.072	4.094	1.368	8.653
4-Year Cumulative Multipliers	1.351	1.708	-0.116	6.154	7.983	9.646	5.789	15.165

- Multipliers computed with monetary regime and no transfers as baseline
- Aggregate and Ricardian sector output multipliers both above 1 in the monetary regime due to the binding ZLB and sticky prices

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.256	1.662	-0.211	6.059	3.072	4.094	1.368	8.653
4-Year Cumulative Multipliers	1.351	1.708	-0.116	6.154	7.983	9.646	5.789	15.165

- Multipliers computed with monetary regime and no transfers as baseline
- Aggregate and Ricardian sector output multipliers both above 1 in the monetary regime due to the binding ZLB and sticky prices
- Multipliers are even higher in the fiscal regime
 - $\circ\ C^R$ multiplier is positive due to sticky prices and persistent inflation dynamics

Inspecting the Mechanisms

Why is the F regime so much better in this particular environment?

- Inflation is expansionary with sticky prices
- Labor taxes are distortionary
- Inflationary pressure generates little relative price distortion in a deep recession

Welfare Effects of Transfer Policy

	Monetar	y Regime	Fiscal Regime		
	Long-run	Short-run	Long-run	Short-run	
		($t=4$)		(t = 4)	
Ricardian Household	-0.022	-0.921	0.065	0.636	
HTM Household	0.097	3.272	0.244	4.983	

• The values are the % point deviation from the welfare of the baseline model under the monetary regime without transfers

Welfare Effects of Transfer Policy

	Monetar	y Regime	Fiscal Regime		
	Long-run	Short-run	Long-run	Short-run	
		($t=4$)		(t = 4)	
Ricardian Household	-0.022	-0.921	0.065	0.636	
HTM Household	0.097	3.272	0.244	4.983	

- The values are the % point deviation from the welfare of the baseline model under the monetary regime without transfers
- Given the redistribution program, inflation taxes, as used in the fiscal regime, produce better welfare outcomes than labor taxes, as used in the monetary regime

Welfare Effects of Transfer Policy

	Monetar	y Regime	Fiscal Regime		
	Long-run	Short-run	Long-run	Short-run	
		($t=4$)		(t = 4)	
Ricardian Household	-0.022	-0.921	0.065	0.636	
HTM Household	0.097	3.272	0.244	4.983	

- The values are the % point deviation from the welfare of the baseline model under the monetary regime without transfers
- Given the redistribution program, inflation taxes, as used in the fiscal regime, produce better welfare outcomes than labor taxes, as used in the monetary regime
- Redistribution policy under fiscal regime generates a *Pareto improvement*

Mechanism and Sensitivity Analysis

- Decomposition of Transfer Multipliers
- Transfer multipliers without COVID shocks
- Different duration of the redistribution program (M-Regime) (F-Regime)
- Different cross-sector elasticity of substitution ($\varepsilon = 1.2$)
- Different tax rule response parameter ($\psi_L=0.1$)
- Exclude \$600 individual tax rebates in the CARES Act (Coibion et al., 2020)

 Multipliers

Multiplier

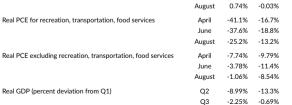
Welfare

Multipliers

Outline

- Simple Model
- 2 Quantitative Model
- ③ Data and Calibration
- ④ Quantitative Results

5 Conclusion


Conclusion

- How transfers are ultimately financed is key for their effectiveness
 - Inflation-financed transfers are significantly more effective than tax-financed transfers
 - The fiscal regime produces high and persistent inflation through the direct and the indirect (interest rate) channels
 - Quantitative exercise shows that inflation-financed transfers fight deflationary pressures in a COVID-recession-like environment
 - Such inflation-induced expansionary effects produce a Pareto improvement
- Future work
 - A richer form of heterogeneity across sectors as well as households
 - Long-term debt and the effects on long-term yields

Data and Model Moments

	Time	Data	Model
Panel A: Targeted moments (percent deviation from January)			
Total Hours for retail, transportation, leisure/hospitality	April	-16.7%	-16.7%
	June	-18.8%	-18.8%
	August	-13.2%	-13.2%
Total Hours excluding retail, transportation, leisure/hospitality	April	-6.58%	-6.58%
	June	-8.57%	-8.57%
	August	-6.13%	-6.13%
PCE Inflation for recreation, transportation, food services	April	-0.99%	-0.99%
	June	-0.39%	-0.39%
	August	-0.37%	-0.37%
Panel B: Non-targeted moments (percent deviation from January)			
PCE Inflation excluding recreation, transportation, food services	April	-0.14%	-6.07%
	June	-0.06%	-2.13%
	August	0.74%	-0.03%
Real PCE for recreation, transportation, food services	April	-41.1%	-16.7%
	June	-37.6%	-18.8%
	August	-25.2%	-13.2%

• The transfer multiplier for output under regime $i \in \{M, F\}$ is defined as

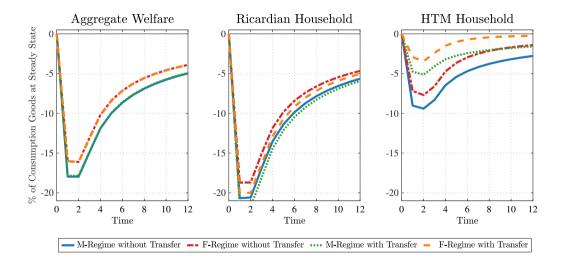
$$\mathcal{M}_t^i(Y) = \left(\frac{\sum_{h=0}^t \beta^h(\tilde{Y}_h^i - Y_h^M)}{\sum_{h=0}^t \beta^h s_h}\right),\,$$

where \tilde{Y}_{h}^{i} is output at horizon h under *i*-regime with transfers, Y_{h}^{M} is output at horizon h under the monetary regime without transfers, and s_{h} is transfers at horizon h

Definition: Welfare Gains

• We define our measure of welfare gain for household of type $i \in \{R, H\}$, $\mu_{t,k}^i$, as

$$\sum_{j=0}^{t} \beta^{j} U\left(C_{j}^{i}, L_{j}^{i}\right) = \sum_{j=0}^{t} \beta^{j} U\left(\left(1 + \mu_{t,k}^{i}\right) \bar{C}^{i}, \bar{L}^{i}\right),$$


where $\{\bar{C}^i, \bar{L}^i\}$ is the steady-state level of type-*i* household's consumption and hours, and $\{C^i_j, L^i_j\}$ are the time path of type-*i* household's consumption and hours

• The values in the table are the % point deviation from the welfare of the baseline model under the monetary regime without transfers.

Short-Run Welfare Gains Comparison

Inspecting the Mechanisms of Transfer Multipliers

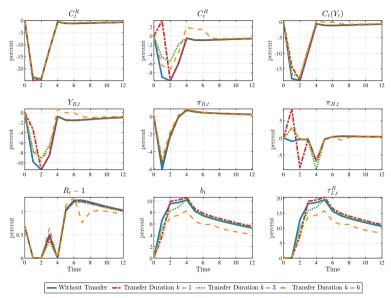
The output multiplier under regime $i \in \{M, F\}$ can be decomposed as:

$$\mathcal{M}_{t}^{i}(Y) = \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(\tilde{Y}_{h}^{i} - \tilde{Y}_{\text{no shock},h})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{COVID Effect with Transfer}} + \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(\tilde{Y}_{\text{no shock},h}^{i} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{Transfer Effect without COVID Shocks}} - \underbrace{\left(\frac{\sum_{h=0}^{t} \beta^{h}(Y_{h}^{M} - \bar{Y})}{\sum_{h=0}^{t} \beta^{h}s_{h}}\right)}_{\text{COVID Effect with Transfer}}\right)$$

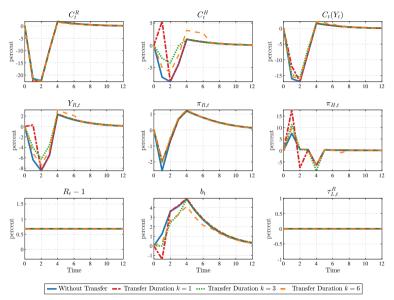
• The third effect is the same across regimes, while the first two are different as they compute the effect for a given regime.

Decomposition of Transfer Multipliers

		Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}_t^F(Y)$	$\mathcal{M}_t^F(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$	
Panel A: Impact Multipliers									
Total Effect	1.256	1.662	-0.211	6.059	3.072	4.094	1.368	8.653	
COVID Effect with Transfer	-15.387	-6.244	-16.404	-12.059	-13.967	-4.276	-15.179	-9.999	
Transfer Effect without COVID	0.792	0.925	-0.597	5.338	1.188	1.391	-0.243	5.872	
COVID Effect without Transfer	-15.852	-6.980	-16.790	-12.780	-15.852	-6.980	-16.790	-12.780	
Panel B: 4-Year Cumulative Multip	oliers								
Total Effect	1.351	1.708	-0.116	6.154	7.983	9.646	5.789	15.165	
COVID Effect with Transfer	-16.708	-10.534	-16.981	-15.812	-10.172	-2.707	-11.162	-6.930	
Transfer Effect without COVID	0.957	1.120	-0.449	5.562	1.053	1.233	-0.364	5.691	
COVID Effect without Transfer	-17.102	-11.121	-17.314	-16.404	-17.102	-11.121	-17.314	-16.404	

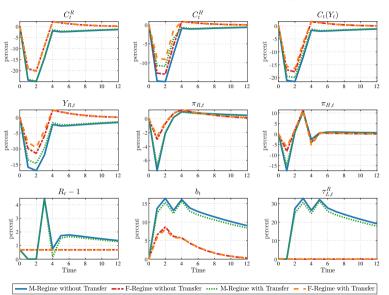

Transfer Multipliers without COVID Shocks

		Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}_t^F(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$	
Panel A: Without COVID shocks under sticky price									
Impact Multipliers	0.792	0.925	-0.597	5.338	1.188	1.391	-0.243	5.872	
2-Year Cumulative Multipliers	1.043	1.221	-0.372	5.677	1.060	1.241	-0.357	5.700	
4-Year Cumulative Multipliers	0.957	1.120	-0.449	5.562	1.053	1.233	-0.364	5.691	
Panel B: Without COVID shocks	under flex	ible price							
Impact Multipliers	0.494	0.577	-0.863	4.938	0.494	0.577	-0.863	4.938	
2-Year Cumulative Multipliers	0.164	0.192	-1.159	4.495	0.494	0.577	-0.863	4.938	
4-Year Cumulative Multipliers	-0.100	-0.115	-1.395	4.14	0.494	0.577	-0.863	4.938	
Panel C: Without COVID shocks	under flex	ible price d	and lump-:	sum tax adj	ustment				
Impact Multipliers	0.494	0.577	-0.863	4.938	0.494	0.577	-0.863	4.938	
2-Year Cumulative Multipliers	0.494	0.577	-0.863	4.938	0.494	0.577	-0.863	4.938	
4-Year Cumulative Multipliers	0.494	0.577	-0.863	4.938	0.494	0.577	-0.863	4.938	


Monetary Regime: Different Duration of Redistribution Policy

Fiscal Regime: Different Duration of Redistribution Policy

Multipliers with Different Transfer Distribution

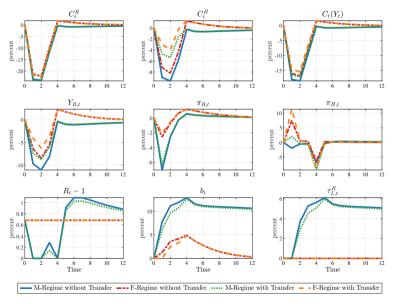

	M	onetary Regir	ne	Fiscal Regime			
Transfer Duration	k = 1	k = 3	k = 6	k = 1	k = 3	k = 6	
Panel A: Impact multip	olier						
$\mathcal{M}^i_{24}(Y)$	1.150	1.256	2.100	1.793	3.072	4.938	
$\mathcal{M}^i_{24}(Y_R)$	1.534	1.662	2.775	2.412	4.094	6.565	
$\mathcal{M}^i_{24}(C^R)$	-0.305	-0.211	0.525	0.252	1.368	2.993	
$\mathcal{M}_{24}^i(C^H)$	5.913	6.059	7.256	6.839	8.653	11.305	
Panel B: 4-year cumul	ative multiplier						
$\mathcal{M}^i_{24}(Y)$	1.158	1.351	2.562	8.040	7.983	7.791	
$\mathcal{M}^i_{24}(Y_R)$	1.544	1.708	3.088	9.787	9.646	9.352	
$\mathcal{M}_{24}^i(C^R)$	-0.298	-0.116	0.972	5.829	5.789	5.627	
$\mathcal{M}_{24}^i(C^H)$	5.924	6.154	7.765	15.277	15.165	14.873	

Long-run Welfare with Different Transfer Distribution

	Mo	netary Regi	ime	Fiscal Regime			
Transfer Duration	k = 1	k = 3	k = 6	k = 1	k = 3	k = 6	
Ricardian Household	-0.029	-0.022	0.001	0.062	l 0.065	0.064	
HTM Household	0.088 0.097 0.121		0.121	0.242	l 0.244	0.236	

Back

Redistribution Policy with Different Policy Regimes ($\varepsilon = 1.2$)


• Back

Transfer Multipliers ($\varepsilon = 1.2$)

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}^M_t(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.418	1.651	0.214	5.358	4.740	5.557	3.779	7.885
2-Year Cumulative Multipliers	1.920	2.169	0.744	5.767	10.413	11.685	9.804	12.409
4-Year Cumulative Multipliers	2.146	2.418	0.985	5.946	12.630	14.123	12.162	14.160

Redistribution Policy with Different Policy Regimes ($\psi_L = 0.1$) (Back)

Transfer Multipliers ($\psi_L = 0.1$)

	Monetary Regime				Fiscal Regime			
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$
Impact Multipliers	1.283	1.698	-0.187	6.097	3.047	4.061	1.346	8.617
2-Year Cumulative Multipliers	1.417	1.789	-0.058	6.245	5.859	7.164	3.888	12.309
4-Year Cumulative Multipliers	1.475	1.856	-0.006	6.322	6.804	8.266	4.734	13.579

Transfer Multipliers (Excluding \$600 Individual Tax Rebates)

	Monetary Regime				Fiscal Regime				
	$\mathcal{M}_t^M(Y)$	$\mathcal{M}_t^M(Y_R)$	$\mathcal{M}_t^M(C^R)$	$\mathcal{M}_t^M(C^H)$	$\mathcal{M}^F_t(Y)$	$\mathcal{M}^F_t(Y_R)$	$\mathcal{M}_t^F(C^R)$	$\mathcal{M}_t^F(C^H)$	
Panel A: Impact Multipliers									
Total Effect	1.254	1.655	-0.212	6.054	4.363	5.802	2.493	10.487	
COVID Effect with Transfer	-26.592	-11.179	-28.272	-21.093	-23.884	-7.502	-25.926	-17.200	
Transfer Effect without COVID	0.787	0.920	-0.601	5.332	1.188	1.389	-0.242	5.871	
COVID Effect without Transfer	-27.059	-11.915	-28.661	-21.815	-27.059	-11.915	-28.661	-21.815	
Panel B: 4-Year Cumulative Multipliers									
Total Effect	1.349	1.702	-0.118	6.150	12.721	15.300	10.010	21.595	
COVID Effect with Transfer	-28.802	-18.402	-29.226	-27.415	-17.530	-4.920	-19.187	-12.105	
Transfer Effect without COVID	0.959	1.120	-0.448	5.563	1.058	1.237	-0.359	5.697	
COVID Effect without Transfer	-29.192	-18.983	-29.556	-28.002	-29.192	-18.983	-29.556	-28.002	