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Abstract

In this paper we show that a one-to-one two-sided matching market
possesses a unique stable matching if and only if preferences on the
normal form (Irving and Leather, 1986; Balinski and Ratier, 1997) are
acyclic (Chung, 2000) if and only if the normal form is precisely the
unique stable matching and nothing more.
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1 Introduction

In this paper we reconsider the classic model of one-to-one two-sided match-
ing, known popularly as the stable matching problem. The framework, in-
troduced in Gale and Shapley (1962), has been applied widely to settings
ranging from school admissions, entry-level labour markets, refugee resettle-
ment, and others (see Roth (2008) for a survey). Yet despite all the attention
that the model has received, a classification of precisely what structural
properties guarantee a unique stable matching remained a long-standing
open question. In this paper we resolve this open question, providing neces-
sary and sufficient conditions on the preferences of market participants that
guarantee a unique stable matching.

Determining if a two-sided market has a unique stable matching is of
practical importance. First, a unique prediction is typically viewed as a
desirable property of any economic model as it saves the analyst from an
“equilibrium selection” headache. Second, there is a literature, beginning
with Roth (1989), that highlights the effect of incomplete information on sta-
ble matchings and uniqueness plays an important role. Third, unique stable
matchings seem to appear disproportionately often in real-world matching
markets, and so an understanding of their origin may help explain why.1

Finally, uniqueness is necessary for the truthful reporting of preferences to
be strategy proof (Gale and Sotomayor, 1985; Demange et al., 1987; Sönmez,
1999).2 Given this, a better understanding of what assures uniqueness could
potentially be levered to ensure both greater efficiency and greater trans-
parency in practice.

While determining if a matching problem has a unique stable matching
is important, determining when a matching problem has a unique stable
matching is easy. Simply run the deferred acceptance algorithm of Gale
and Shapley (1962) twice, once with each side in the role of proposer, and
check if the stable matching found for each run is the same. If yes, then

1Uniqueness has been observed in the National Resident Matching Program (Roth and
Peranson, 1999), Boston school choice (Pathak and Sönmez, 2008), online dating (Hitsch
et al., 2010), and the Indian marriage market (Banerjee et al., 2013).

2Gale and Sotomayor (1985) show that if a matching is to be generated by the deferred
acceptance algorithm of Gale and Shapley (1962), then, unless there is a unique stable
matching, it is always beneficial for at least one participant to misrepresent their true
preferences. Example 1 in Romero-Medina and Triossi (2021) shows that a unique stable
matching is not sufficient for strategy proofness. In incomplete information environments,
Ehlers and Massó (2007) show that truth-telling is an ordinal Bayesian Nash equilibrium
of the revelation game induced by a common belief and a stable mechanism if and only if
all the profiles in the support of the common belief have singleton cores.
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there is a unique stable matching; if no, then there are at least two. Since
the deferred acceptance algorithm runs in polynomial time, this algorithmic
approach provides an efficient solution from the perspective of computa-
tional complexity. However, while computationally efficient, the algorithmic
approach sheds no light on the structure of those matching problems that
possess a unique stable matching. As such, and perhaps in part also due
to the problem’s importance, a host of conditions on preferences that are
sufficient for uniqueness have been proposed.3

Perhaps the reason a necessary and sufficient condition for uniqueness
had not been found until now is that seeking conditions on the full pref-
erence lists is, in a sense to be made precise later, excessive. Rather all
that matters for the set of stable matchings is how preferences operate on
the essential part of the matching problem, the subproblem that we term
the normal form.4 Our main result, Theorem 1, shows that a unique sta-
ble matching is equivalent to preferences being acyclic (Chung, 2000) on the
normal form which is in turn equivalent to the normal form being the unique
stable matching and nothing more. The second equivalence of Theorem 1 is
striking because while the normal form being the unique stable matching is
trivially acyclic, the opposite implication is somewhat unexpected. Let us
now explain the concepts of acyclic preferences and the normal form.

In a two-sided market with workers on one side of the market and firms
on the other,5 the shortest possible cycle involves two workers and two firms,
has length 4, and is described as follows: the 1st worker prefers the 2nd firm
to the 1st firm, the 2nd firm prefers the 2nd worker to the 1st worker, the 2nd

worker prefers the 1st firm to the 2nd firm, and the 1st firm prefers the 1st

worker to the 2nd worker. Acyclic preferences are simply those that do not
possess a cycle of this kind. However, requiring that preferences are acyclic
is by itself only sufficient for a unique stable matching (Romero-Medina and

3Examples include the sequential preference condition (Eeckhout, 2000), the no cross-
ing condition (Clark, 2006), the co-ranking condition (Legros and Newman, 2010), the
acyclicity condition (Romero-Medina and Triossi, 2013), the universality condition (Holz-
man and Samet, 2014), oriented preferences (Reny, 2021), and aligned preferences (Fer-
dowsian et al., 2022). The concept of α-reducibility (Alcalde, 1994; Clark, 2006) is both
necessary and sufficient for a matching market and any of its submatching markets to
have a unique stable matching.

4The submatching market that is the normal form appeared first in Irving and Leather
(1986) and independently in Balinski and Ratier (1997). Irving and Leather (1986) did
not introduce a term to describe the normal form; Balinski and Ratier (1997) used graph-
theoretic terminology and referred to it as a domination-free marriage graph.

5This will be the environment that we consider throughout. We emphasise that the
terms “workers” and “firms” are merely placeholders - as mentioned in the opening para-
graph the framework is applied widely.
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Triossi, 2013). To add necessity, one need only require the weaker condition
that preferences are acyclic on the normal form. In Example 2 we present
a matching market with preferences that are not acyclic, and yet there is a
unique stable matching since the preferences are acyclic on the normal form.

So what then is the normal form of a matching problem? The normal
form is arrived at by stripping away parts of the preference lists that are
not relevant to the set of stable matchings.6 We term the procedure that
discards the irrelevant information the iterated deletion of unattractive alter-
natives (IDUA). The IDUA procedure works by repeatedly pivoting around
a particular kind of instability. Suppose that firm f is worker w’s most pre-
ferred firm. Then there cannot be a stable matching that matches f to a
worker that it prefers less than w, since f would propose pairing up with w
and w would certainly accept. Worker w is f’s outside option and we say
that all the workers less preferred by f to w are unattractive to f. Relating
this to the concept of a reservation wage in labour markets, worker w is in
some sense the current reservation partner for firm f.

Since f can guarantee doing better than those unattractive workers in
every stable matching, we can delete these workers from f’s preference list
since their presence on the list is immaterial. Similarly, all the workers
deleted by f will realise that a match with f ain’t happening and so will
delete f from their preference lists; unattractiveness is reciprocated. The
new matching environment is strictly smaller than the original environment
and yet by definition the set of stable matchings can not have changed. But
most importantly, further rounds of deletion may now be possible with the
simplified preference lists because market participants that were not initially
unattractive can become so. That is, one’s outside option / reservation
partner can only ever improve. Eventually the deletion procedure can go no
more and what remains we call the normal form.

The IDUA procedure that reduces a matching problem to its normal form
parallels closely the iterated deletion of dominated strategies (IDDS) proce-
dure for strategic games (see Gale (1953) and Moulin (1979)). Once IDDS
stops, the set of surviving strategies are the only “rational” way to play a
game in which all players are rational and there is common knowledge of this
fact. That is, IDDS strips a game of strategies that no rational individual
who fully understands the environment could ever justify choosing; the re-
sulting game is smaller and yet the set of solutions remains unchanged. The

6Reducing a mathematical object to its bare-boned constituents, the so-called
“canonical form” or “normal form”, occurs not only in game theory. It is a
common approach in many branches of both pure and applied mathematics (see
https://en.wikipedia.org/wiki/Canonical form).
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IDUA procedure has a similar effect on matching problems. While IDUA
discards information, no “important” information is discarded in the sense
that it only deletes pairs that cannot be part of any stable matching; the
resulting matching problem is smaller and yet the set of solutions remains
unchanged.7 In Section 2.3 we compare and contrast these two procedures
with particular focus on the sorts of higher-order reasoning required for each
to be operationalised.8

While the IDUA procedure can be justified by inferences based on higher
ordering reasoning, it also admits another, more practical, interpretation
that we believe is interesting. The well-known deferred acceptance algo-
rithm of Gale and Shapley (1962) is often viewed as an interactive forum
wherein those on one side of the market are assigned as active proposers and
those on the other side regulated to the role of passive responders. In a sim-
ilar vein, the IDUA procedure can be envisaged as a dynamic marketplace
in which, perhaps more realistically, every market participant is simultane-
ously proposing, responding to proposals, and also handing out preemptive
rejections. While Theorem 1 confirms that a matching market operating in
such a fashion will not fully “clear” unless there is a unique stable matching,
the market will invariably become smaller and easier to parse.9 Interpreted
in this way, IDUA has the flavour of a bargaining situation or price dis-
covery mechanism typically more associated with traditional “markets with
prices”, in the sense that it closes in on the upper and lower boundaries of
the (feasible region of) Pareto efficient allocations.10

The IDUA procedure generates ever-shortening preference lists and ever-

7So from a practical perspective running IDUA should be the first port of call when
considering a matching problem for which stability is a requirement. IDUA reduces the
size of the input, rendering it more tractable, without affecting the desired output (the set
of stable matchings). In much the same way, one often begins the analysis of a strategic
game by looking for dominated strategies.

8Just as an ultra-sophisticated player can determine when a game is dominance solv-
able, so too could an ultra-sophisticated market participant determine when a matching
problem has a unique stable matching.

9The market will only not become smaller in the statistically rare and economically
unusual case that every participant’s favourite partner views them as least desirable.

10For a more classical setting with this kind of feature, consider a seller who owns an
object and values it at e5, and a buyer who values the same object at e10. In a real-
world bargaining situation the buyer may start out with a bid short of e5 while the seller
may first make a demand in excess of e10; only when one party crosses into the interval
[e5, e10] does the “real” bargaining begin. Viewed like this, the deferred acceptance
algorithm bestows upon the proposing side in a two-sided market the sort of extreme
bargaining power afforded the proposer in the ultimatum game (Harsanyi, 1961; Güth
et al., 1982).
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shortening preference lists can be cumbersome to manage. Fortunately,
the directed graph (digraph) approach to matching introduced by Maffray
(1992) allows all the information of a matching problem to be encoded on a
single digraph instead of multiple preference lists, allowing reductions to be
handled easily. This equivalent formulation is simple to explain. Instead of
“lining up” the participants on opposite sides of the market, one constructs
a grid wherein each row corresponds to a specific worker, each column corre-
sponds to a specific firm, and every vertex in the grid corresponds to a pair.
Preferences are depicted by horizontal arcs (directed edges) for workers and
vertical arcs for firms. A matching is depicted by a subset of vertices no two
of which are in the same row nor the same column. The acyclic preferences
of Chung (2000) correspond exactly to the absence of a directed cycle in the
matching digraph.

The paper proceeds as follows. Section 2 introduces the matching en-
vironment that we consider, the IDUA procedure, and the normal form.11

Section 3 presents our result classifying uniqueness. In Section 4 we intro-
duce the digraph formulation of the matching problem. Using this setup
we first illustrate how the IDUA procedure works. We then sketch how an
analyst can recover, and thereby classify, the full collection of instances for
which a given matching is the unique stable matching. Section 5 concludes
and discusses potential avenues for future work.

All proofs appear in Appendix A. In Appendix B we show how running
IDUA “in reverse” allows an analyst to identify the full collection of match-
ing problems for which a given matching is the unique stable matching.

2 Matching problems and their normal form

In Section 2.1 we introduce the one-to-one matching environment with com-
plete preference lists. In Section 2.2 we define what it means for market
participants to be deemed unattractive. In Section 2.3 we introduce the
IDUA procedure that repeatedly prunes information from preference lists
that is irrelevant to the set of stable matchings of a given matching market.
When the IDUA procedure stops, the resulting environment is termed the
normal form.

11Many of the properties of IDUA used in our proof of the main result, Theorem 1, were
already obtained by Balinski and Ratier (1997) using matching digraphs. To make our
paper self-contained, we prove every property that we use and whenever a result of ours
is similar to one from Balinski and Ratier (1997) we explicitly state as such. Our main
result, Theorem 1, is completely new.
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2.1 Matching problems

Let W be a set of n workers and let F be a set of n firms. (We fix n as a
positive integer at least greater than 2.) Each worker w ∈ W has a strict
preference relation, �w , over the set of firms, and each firm f ∈ F has a
strict preference relation, �f , over the set of workers. That is, when worker
w prefers firm f ′ to firm f ′′, we will write f ′ �w f ′′, with an analogous
statement for the preferences of firms. A preference relation �w is said to
be complete if all firms are in the relation; similarly for �f . We assume
throughout that all preference relations are complete.12

The following is the environment that we consider in this paper. It is
precisely the environment originally defined in Gale and Shapley (1962).

Definition 1. An instance of the stable matching problem, P , is defined
as the pair ({�w}w∈W , {�f}f∈F ), where {�w}w∈W and {�f}f∈F are the
collection of complete preference relations, one for each worker and firm.

A matching in P is a mapping µ from W ∪F to itself such that: for every
worker w ∈ W , µ(w) ∈ F ; for every firm f ∈ F , µ(f) ∈ W ; and for every
w, f ∈W ∪ F , µ(w) = f if and only if µ(f) = w.

The following is the key definition proposed by Gale and Shapley (1962).

Definition 2. Worker w and firm f form a blocking pair with respect to
matching µ in P , if f �w µ(w) and w �f µ(f).

In words, (w, f) form a blocking pair with respect to matching µ if both
w and f prefer each other over their partners in µ. That is, w and f would
prefer to break away from their current partners and pair up together. The
notion of stability is defined by the absence of a blocking pair.

Definition 3. A matching µ in P with no blocking pairs is a stable match-
ing.13

Gale and Shapley (1962) introduced the deferred acceptance algorithm
and used it to prove the following existence result.

12While we have defined a preference relation as a binary relation over a set of partici-
pants, another equivalent way of defining preferences is simply to provide an ordered list
where the first entry on the list is the most preferred participant, and so on. Occasionally
it will be easier for us to view preferences as lists, for example in Definition 5.

13Recall that we have assumed that the number of workers equals the number of firms
and that all preferences are complete. We do so purely for convenience. All results in
the paper can be shown to hold for any one-to-one stable matching problem, with the
caveat that in such instances there can exist stable matchings in which not all market
participants are assured to be matched.
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Theorem (Gale and Shapley (1962)). Every instance of the stable matching
problem possesses at least one stable matching.

Example 1 below illustrates the above definitions.

Example 1. Let P1 be an instance of the stable matching problem in which
there are three workers and three firms. Precisely, W = {w1, w2, w3} and
F = {f1, f2, f3}, and preferences are as follows.

w1 : f2 �w1 f1 �w1 f3 f1 : w1 �f1 w2 �f1 w3

w2 : f2 �w2 f3 �w2 f1 f2 : w1 �f2 w2 �f2 w3

w3 : f1 �w3 f2 �w3 f3 f3 : w1 �f3 w3 �f3 w2

It can be checked that P1 possesses two stable matchings, that we label
µ1 and µ2. They are,

µ1 : (w1, f2), (w2, f3), (w3, f1)

µ2 : (w1, f2), (w2, f1), (w3, f3)
(1)

Example 1 is straightforward. We introduce it because in the next section
we use it to highlight how an instance of the stable matching problem may
contain more information than is required in order to compute the full set
of stable matchings for a particular market.

To give a taster of what we mean by the above, let us briefly consider
Example 1 from the perspective of worker w1 and from the perspective of
firm f2. Since w1’s most preferred firm is f2 and f2’s most preferred worker
is w1, it must be that the pair (w1, f2) are in all stable matchings since
otherwise (w1, f2) would form a blocking pair. (This is corroborated by the
two stable matchings of Example 1, µ1 and µ2, given in (1).) That is, we
observe and exploit the fact that most-preferred partners play a special role
in matching problems since one half of a blocking pair is guaranteed.

But we can build on the above observation. Given that w1 will certainly
be matched with (their favourite firm) f2 in every stable matching, the
fact that w1 has a relative preference for f1 over f3 is irrelevant. By this we
mean the following: observe that if w1’s preferences were altered so that their
relative preference for f1 over f3 were swapped, the set of stable matchings
would remain unchanged. In fact, it is also the case that if worker w1’s
preferences were incomplete, such that they preferred to be unmatched over
being matched with either f1 or f3, the set of stable matchings would further
remain unchanged. This motivates the notion of an unattractive alternative
that is the subject of the next section.
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2.2 Unattractive alternatives

The informal discussion following Example 1 above highlights that for some
instances of the matching problem the input supplied may exceed that which
is required to compute the set of stable matchings. That is, since worker w1

in Example 1 is so highly sought-after, the environment would be the same
were w1 to have incomplete preferences. But then the position in which
worker w1 appears on the preference lists of the firms with whom w1 will
not match is also irrelevant to the set of stable matchings.

We formalise this using the symbol ∼ to denote indifference and using
the symbol as a placeholder that is “as bad” as unattractive alternatives.

Definition 4 (Unattractive alternatives). We say that

(i) firm f is an unattractive alternative to worker w, denoted ∼w f, if
there is some firm f ′ 6= f such that (i) f ′ �w f, and (ii) w �f ′ w

′ for
all w′ 6= w.

(ii) worker w is an unattractive alternative to firm f, denoted ∼f w, if
there is some worker w′ 6= w such that (i) w′ �f w, and (ii) f �w′ f

′

for all f ′ 6= f.

(iii) f is an unattractive alternative to worker w whenever w is an unattrac-
tive alternative to firm f (and vice versa).

In words, condition (i) of Definition 4 says the following: worker w deems
firm f unattractive if w will certainly do better than f in every stable match-
ing. This is guaranteed when w is the most preferred worker of some firm
f ′ that w prefers to f, because then w and f ′ would form a blocking pair
to any matching that matches w with f. Condition (ii) of Definition 4 is
the analog to condition (i) but for firms instead of workers. Condition (iii)
stipulates that unattractiveness is reciprocated.

Let us now revisit Example 1 using this new terminology. We begin by
considering condition (i). As noted previously, worker w1 is firm f2’s most
preferred worker. Given this the other two firms f1 and f3 are unattractive
to w1. It then follows that f2 �w1 ∼w1 {f1, f3}, where we have gathered
the collection of w1’s unattractive alternatives in a set in which the order
that they are listed is immaterial. By a similar reasoning, condition (ii)
yields w1 �f2 ∼f2 {w2, w3}.

Consider now how the above statements impact instance P1 of Exam-
ple 1. It is clear that P1 is, from the perspective of stability, identical to the

9



instance P ′1, where P ′1 is defined as, W = {w1, w2, w3} and F = {f1, f2, f3},
and preferences are as follows:14

w1 : f2 �w1 f1 : w1 �f1 w2 �f1 w3 �f1

w2 : f2 �w2 f3 �w2 f1 �w2 f2 : w1 �f2

w3 : f1 �w3 f2 �w3 f3 �w3 f3 : w1 �f3 w3 �f3 w2 �f3

Let us now illustrate condition (iii) from Definition 4. Since worker w1

has deemed both firms f1 and f3 unattractive, condition (iii) requires that
both f1 and f3 reciprocate. The reason for this is that a match with w1 is
not happening for either of these firms, so maintaining w1 in one’s preference
list serves no purpose. A similar statement holds for workers w2 and w3,
both of whom reciprocate unattractiveness to firm f2. This means that
instance P ′1 above is also identical to instance P ′′1 , where P ′′1 is defined as,
W = {w1, w2, w3} and F = {f1, f2, f3}, and preferences are as follows:

w1 : f2 �w1 f1 : w2 �f1 w3 �f1

w2 : f3 �w2 f1 �w2 f2 : w1 �f2

w3 : f1 �w3 f3 �w3 f3 : w3 �f3 w2 �f3

Let us now make some observations. The first, and it is easily verified,
is that the set of stable matchings for instance P ′′1 coincides precisely with
that of P1. The second is that the set of stable matchings coincide despite
the fact that P ′′1 is, in a precise sense, strictly smaller than instance P1. To
see this we note two features: (i) for instance P ′′1 , every market participants’
preference list is no longer than for instance P1 (in fact each is strictly
shorter), and (ii) the relative ordering of any pair in a preference list of P ′′1
is the same as for P1. Instance P ′′1 contains all the relevant information of
P1 and yet is simpler to parse.

The above hints that (mutually) unattractive alternatives play no role
in the set of stable matchings of any instance of the matching problem. In
many ways, unattractive alternatives have much the same effect on stable
matchings as strictly dominated strategies have on strategic games. We re-
call that deleting strictly dominated strategies from a strategic environment
reduces the size of the game and yet does not change the set of rationalis-
able outcomes (the set of predictions). One might wonder whether deleting
unattractive alternatives has the effect of reducing the input to a match-
ing problem and yet does not affect the set of stable matchings (the set of
predictions). The answer turns out to be yes.

14To emphasise that instance P1 is equivalent to this smaller instance, P ′1, we omit from
a participant’s preference list those that are equivalent to .
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Another natural question to ask is whether deleting unattractive alter-
natives from an instance of the matching problem can only be performed
once. When deleting dominated strategies, the deletion operation can be
applied on the reduced version of a game since strategies that were not ini-
tially strictly dominated can become so. The same occurs with unattractive
alternatives, and the reason is that there may be participants who were not
initially unattractive but are unattractive in the reduced environment. We
address this in the next section wherein we define the iterated deletion of
unattractive alternatives (IDUA), a procedure that parallels closely the iter-
ated deletion of dominated strategies (IDDS) due to Gale (1953) and applied
to voting by Moulin (1979).

2.3 IDUA and a Matching Problem’s Normal Form

We now define the iterated deletion of unattractive alternatives (IDUA), a
procedure that repeatedly prunes redundant information from the prefer-
ence lists. Technically it continually deletes unattractive participants from
preference lists until there remains no market participant who views any
other as unattractive.

Definition 5 (The iterated deletion of unattractive alternatives (IDUA)).
Given an instance of the matching problem P =

(
{�w}w∈W , {�f}f∈F

)
,

we define �0
w :=�w and �0

f :=�f , and for each k ≥ 1, form the matching

(sub)problem P k =
(
{�k

w}w∈W , {�k
f}f∈F

)
where for every worker w and

every firm f,

�k
w =

{
f | f �k−1

w and w �k−1
f

}
, and

�k
f =

{
w | w �k−1

f and f �k−1
w

}
.

(2)

Finally, define the normal form of matching problem P , P ∗, as P k∗ where
k∗ is the minimum k such that P k+1 = P k. That is, the normal form P ∗ is
what remains when no further deletions are possible for some P k. Worker
preferences on the normal form are denoted

{
�∗w
}

and firm preferences by
{�∗f}.

The iterative part of Definition 5, given in (2), says that if worker w
and firm f do not find each other mutually unattractive at some round of
the iteration procedure, then neither deletes the other from their preference
list during that round. That is, worker w carries firm f forward to the next
round of the procedure and vice versa.

11



The IDUA procedure has parallels with the IDDS procedure that are
quite striking. Once the IDDS procedure stops (and it must), the set of
surviving strategies are the only “rational” way to play the game. The
following result, whose proof is in the Appendix, confirms a similar feature of
the IDUA procedure. Precisely, it shows that while the IDUA procedure may
discard information from a matching problem, no “important” information
is discarded in the sense that the set of stable matchings for P can be
computed using only P ∗. That is, preference lists are pruned in such a way
that the set of stable matchings remains unchanged.15

Lemma 1 (Balinski and Ratier (1997)). The iterated deletion of unattrac-
tive alternatives does not change the set of stable matchings. That is, P
and its associated normal form, P ∗, contain exactly the same set of stable
matchings.

Let us now make two observations. The first concerns the details of the
IDUA procedure that arrives at the normal form and the second pertains
to the normal form’s mathematical structure. First, in the discussion of
unattractive alternatives following Example 1 and also in the formal state-
ments of Definition 5, statements about deleting unattractive alternatives
were made in a particular order. A natural concern then is whether the
order in which the unattractive alternatives are deleted might matter. For-
tunately, the first part of Lemma 2 below (that also appeared in Balinski
and Ratier (1997)), whose proof is in the Appendix, shows that there is no
issue with this as the resulting normal form is arrived at independently of
the order in which unattractive alternatives are removed.16

Concerning the structure of the normal form, one might think that the
following conjecture should be true (but it turns out not to be): if worker w
and firm f do not find each other unattractive at any point (i.e., f ∈

{
�∗w
}

and w ∈ {�∗f}), then the pair (w, f) is contained in some stable matching.
The second part of Lemma 2 shows that the conjecture is false. However, it
is the case that if the pair (w, f) is contained in the normal form but is not
part of any stable matching, then it must satisfy structural property (s).

15Irving and Leather (1986) introduce an alternative deletion procedure that is discussed
in detail in Section 3.2.1 of Roth and Sotomayor (1990). While the procedure is mechani-
cal, in that it does not have a behavioural interpretation like IDUA, using the second part
of Lemma 2 it can be shown that this procedure also reduces a matching problem to its
normal form.

16An analogous result holds for IDDS when applied to finite games (see Mas-Colell et al.
(1995) Exercise 8.B.4), though care must be taken with infinite games (see Dufwenberg
and Stegeman (2002)).
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Loosely, property (s) says that the pair must be “surrounded” by pairs that
are contained in some stable matching.

Lemma 2. Let P be an instance of the matching problem. Then the normal
form of P , P ∗, is uniquely defined. That is, no matter in which order we
repeatedly delete unattractive alternatives from preference lists, we always
end up with the same P ∗.

Furthermore, suppose that f ∈
{
�∗w
}

and w ∈ {�∗f}. Then, either (w, f)
is part of some stable matching or the following property (s) holds.

(s): There exist firms fj1 and fj2 such that fj1 , fj2 ∈ {�∗w} with fj1 �∗w
f �∗w fj2 , and there exist workers wi1 and wi2 such that wi1 , wi2 ∈ {�∗f}
with wi1 �∗f w �∗f wi2 .

Given that strictly smaller instances are by definition computationally
easier to handle, together Lemmas 1 and 2 imply that performing the IDUA
procedure should be the first port of call for an analyst who insists on
stability in a given two-sided matching market.

We now document some further connections between the IDDS proce-
dure and the IDUA procedure. The first point of note concerns effectiveness.
There are many strategic games in which IDDS does nothing. On the other
hand IDUA almost always has some bite - except in the rare cases that every
market participant’s favourite partner ranks them last.

Like IDDS and the solution concept of rationalizability (Bernheim, 1984;
Pearce, 1984; Tan and Werlang, 1988), IDUA can be justified by appeal-
ing to a form of “higher order reasoning” in recognising how other partici-
pants view the environment. However, the higher order reasoning invoked
is different for IDUA. Both IDDS and rationalizability work by assuming
“rationality” and “sophistication” on the part of individuals: rational in-
dividuals avoid dominated strategies and sophisticated individuals expect
their rational opponents to do the same. And so on. With IDUA there is a
“moment” at which both participants simultaneously recognise each other’s
unattractiveness and delete each other from their preference lists. It is then
required that third parties are capable of recognising this and processing it.
Third parties do so as their relative placing in the preference lists of others
can have changed. While this might seem implausible at first, the solution
concept of stability is coalitional in nature, so perhaps it is not unreasonable
that the sort of higher order reasoning in which participants engage should
be too.

Another way to highlight how the higher order reasoning differs between
IDUA and IDDS can be seen by considering how each procedure works in the
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first round of deletion. In a strategic game, a player can delete their own
strictly dominated strategies without any knowledge of the other players’
payoffs. The same is not true of IDUA in matching markets. Worker w can
only decide that firm fj is unattractive if there is some other firm, say fk, who
worker w prefers to firm fj and for whom worker w is the most preferred
worker. But for worker w to be able to do this, in addition to knowing
their own preferences, importantly worker w must also have knowledge of
fk’s preferences. (We note however that worker w need not know firm fj ’s
preferences.)

We conclude this section with an observation about the normal form of
matching problems. If any two instances of the matching problem possess
the same normal form, then they must have the same set of stable matchings.
But one can show by example that the reverse implication does not hold.
That is, it need not be the case that two instances with the same set of stable
matchings have the same normal form. However, the reverse implication
does hold for instances that possess the same unique stable matching. This
can be exploited as follows: given a matching one can generate all instances
for which that matching is the unique stable matching; simply start out
with the matching in question and run all possible variants of the IDUA
procedure “in reverse”. Such a procedure is sketched in Appendix B.

3 Classifying unique stable matchings

Checking whether an instance of the matching problem has a unique stable
matching can be done as follows. Run the deferred acceptance algorithm
twice, once with workers in the role of proposers and once with firms in the
role of proposers, and check if the stable matching found for each run is the
same. If yes, then there is a unique stable matching. The reason for this
is that the set of stable matchings form a distributive lattice of which the
worker-proposing stable matching and the firm-proposing stable matching
are the extreme elements (Knuth, 1996). Since the deferred acceptance
algorithm runs in polynomial time, the algorithmic approach provides an
efficient solution from the perspective of computational complexity.

But while computationally efficient, the algorithmic approach above sheds
no light on the structure of instances that possess a unique stable match-
ing. It is for this reason that a host of sufficient conditions on preferences
ensuring uniqueness have been proposed (see the references in Footnote 3).
Perhaps the reason a necessary condition had not been found before now
was that, as per Lemma 1, what really matters is how preferences operate
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on the normal form. It turns out that the barrier to uniqueness is preference
lists that possess cycles (Chung, 2000) on the normal form.

Definition 6. Let P = ({�w}w∈W , {�f}f∈F ) be an instance of the match-
ing problem with n workers and n firms. We say that the preference lists of
P possess a cycle, if there exists a subset of workers of size k and a subset
of firms of size k (with 2 ≤ k ≤ n), and an enumeration of and ordering of
the participants {f1, w1, f2, w2, f3, . . . , wk−1, fk, wk} such that

fj+1 �wj fj for all j = 1, . . . , k (modulo k), and

wj �fj wj−1 for all j = 1, . . . , k (modulo k)
(3)

We say that an instance P of the matching problem is acyclic if its preference
lists do not possess a cycle.17

Each participant’s preference list is generated by a binary relation that
is antisymmetric and negatively transitive. Together these imply transitiv-
ity, which effectively translates as “individually acyclic”. But while each
individual preference relation is acyclic, cycles can materialise in the system
as a whole due to the interconnectedness of the entire market. We defer
further discussion of this until Section 4 because matching digraphs allow
the representation of cycles in an intuitive way.

We now state our main result whose proof is found in Appendix A.

Theorem 1. Let P be an instance of the matching problem and let P ∗ be its
associated normal form. Then the following three statements are equivalent.

(a) P has a unique stable matching.

(b) The normal form of P , P ∗, is acyclic.

(c) In the normal form, P ∗, every market participant’s preference list is a
singleton.

The equivalence of (a) and (b) confirms that it is cycles in preferences
on the normal form that prevent uniqueness. To see why, consider a stable
matching, µ, and consider a subset of market participants, S, whose prefer-
ences possess a cycle. Well it turns out that we can then “shuffle around”
some participants in S, by assigning them different partners, also in S, and
arrive at another stable matching. To illustrate this let us return again to

17In the context of many-to-one matching environments both Ergin (2002) and Kesten
(2006) provide alternative definitions of acyclic preference lists.
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Example 1 that possessed two stable matchings. We restrict attention to
P ′′1 that is the normal form of P1 (in that no further deletions are possible).

Let S be the subset of market participants {w2, w3, f1, f3}. Restricted to
this subset, there are two stable (sub)matchings. They are (w2, f1), (w3, f3)
and (w3, f1), (w2, f3). Note that the first of these stable (sub)matchings
is firm-optimal, as evidenced by the fact that both firms are with their
most preferred partner available in the normal form (while worker w1 is
the favourite worker of all firms in the original instance, P1, worker w1 was
deleted from the preference lists of all firms bar firm f2). Likewise, the
second stable (sub)matching is worker-optimal.

When we “zoom in” further on the subset of market participants S in the
normal form P ′′1 , we note that there is a cyclic structure to their collective
preferences. To illustrate this, let us construct a sequence that begins with
an arbitrarily chosen participant from this subset, and every subsequent
element in the sequence is the most preferred participant of the participant
listed before. As an example, if we begin the sequence with w2, then the
sequence is (w2, f3, w3, f1, w2, . . . ), where the “. . . ” indicate that the cycle
has restarted. This can be formally stated as follows.

f3 �w2 f1 and w3 �f3 w2 and f1 �w3 f3 and w2 �f1 w3 (4)

Now if we relabel w2 by w1′ , f1 by f1′ , w3 by w2′ , and f3 by f2′ , then the
expressions in (4) read as

f2′ �w1′ f1′ and w2′ �f2′ w1′ and f1′ �w2′ f2′ and w1′ �f1′ w2′ (5)

where we note that the expressions in (5) provide an example, with k = 2,
of the condition for a cycle from Definition 6.

Romero-Medina and Triossi (2013) showed that acyclic preferences are
sufficient for uniqueness. From the fact that (b) implies (a) we can see why
this is true: if the preference lists are acyclic to begin with, then clearly
pruning the preference lists cannot generate a cycle that was not there be-
fore. That is, if the preferences are acyclic to begin with (and hence there
is a unique stable matching), then the normal form, that is by definition
a (weakly) smaller matching market, must be acyclic too (and hence must
possess the same unique stable matching).

Let us now consider the equivalence of parts (b) and (c). On first inspec-
tion (c) appears a far stronger condition than (b), in that clearly (c) implies
(b): since for preference lists to possess a cycle at least four participants must
each have a preference list of length at least 2. That (b) implies (c) means
that once an acyclic (sub)matching problem is reached, the IDUA procedure
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will continue to truncate the problem until it reduces to the unique stable
matching and nothing more.18

In the next section we formally introduce the directed graph formula-
tion of matching problems due to Maffray (1992). While the reader not
interested in the proofs of our results can skip this section, we believe that
reformulating stable matching problems in this way is useful as it allows one
to visualise the problem in question. To illustrate how visually intuitive this
equivalent formulation is, Figure 1 depicts the normal form of instance P1,
P ′′1 , from Example 1. With three workers and three firms there is a 3 × 3
grid, where each vertex in the grid is a pair with vertex (i, j) corresponding
to the pair (wi, fj). A matching is a subset of three vertices no two of which
are in the same row nor the same column.

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

Figure 1: Illustrating a cycle in the normal form of P1 from Example 1.

The vertices that are hollow represent pairs that cannot be part of any
stable matching as both participants in that pair deemed the other unattrac-
tive at some point along the IDUA procedure. So, for example, the fact that
vertex (2, 2) is hollow connotes that at some point during the IDUA pro-
cedure, worker w2 deemed firm f2 unattractive and firm f2 did likewise
to worker w2. The directed edges (arcs) between pairs that remain depict
preferences. For example, the arc from vertex (2, 1) to (2, 3) indicates that
worker w2 prefers firm f3 to firm f1 (i.e., f3 �w2 f1). The clockwise cycle of
arcs is easily identified by simple eyeballing, and the reader can verify that

18Given the similarity between IDDS for strategic games and IDUA for matching prob-
lems, matching markets with exactly one stable matching are in a sense the analog of
strategic games that are dominance solvable.
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this cycle corresponds precisely to that given in (4). (In the directed graph
representing the original instance P1, there were many more directed edges,
but when a vertex in the directed graph (a pair) is deleted so too are all
directed edges that are incident to it.)

4 Stable matchings and directed graphs

In Section 4.1 we introduce terminology for digraphs; the terminology is
standard and so this section can be skipped by any reader familiar with
digraphs. Section 4.2 introduces the equivalent matching digraph represen-
tation of a matching problem introduced by Maffray (1992) and illustrates
how the IDUA procedure works via an example.

4.1 Digraph terminology and notation

A directed graph (or just digraph) D consists of a non-empty finite set V (D)
of elements called vertices and a finite set A(D) of ordered pairs of distinct
vertices called arcs. We shall call V (D) the vertex set and A(D) the arc set
of D and write D = (V (D), A(D)). For an arc xy the first vertex x is its tail
and the second vertex y is its head. Moreover, x is called an in-neighbour of y
and y an out-neighbour of x. We also say that the arc xy leaves x and enters
y. We say that a vertex x is incident to an arc a if x is the head or tail of
a. For a vertex v ∈ V (D), the out-degree of v in D, d+D(v), is the number of
out-neighbours of v Similarly, the in-degree of v in D, d−D(v), is the number
of in-neighbours of v. A vertex u is isolated if d+D(u) = d−D(u) = 0.

A walk, W , in a digraph D is a sequence of vertices x1, x2, . . . , xp for
which there is an arc from each vertex in the sequence to its successor in the
sequence. Such a walk is written as W = x1x2 . . . xp. Special cases of walks
are paths and cycles. A walk W is a path if the vertices of W are distinct.
If the vertices x1, x2, . . . , xp−1 are distinct, for p ≥ 2 and x1 = xp, then W
is a cycle.

For a digraph D = (V,A) and an arc xy ∈ A, deletion of xy from D
results in the digraph D − xy = (V,A \ {xy}). For a vertex v ∈ V , deletion
of v from D results in the digraph D − v = (V \ {v}, A \ Av), where Av is
the set of arcs in A incident to v. A digraph D′ is called a subdigraph of D
if D′ is obtained from D by deleting some vertices and arcs. If only vertices
are deleted, D′ is an induced subdigraph of D.

For a textbook treatment of digraphs the reader is referred to Bang-
Jensen and Gutin (2009).
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4.2 Matching digraphs

Given an instance of the matching problem, P , we define the associated
matching digraph, D(P ) = (V,A), where V is the vertex set and A is the arc
set. The vertex set V is defined as V := W ×F . The arc set A is defined as
follows.

AW := {(w, fi)(w, fj) | fj �w fi}
AF := {(wi, f)(wj , f) | wj �f wi}
A := AW ∪AF

A matching in P is depicted in D(P ) by a set of vertices, M , such that
for every w ∈W there exists exactly one vertex, (w, f ′), in M containing w
and for every f ∈ F there exists exactly one vertex, (w′, f), in M containing
f. (Going forward we will abuse terminology and refer to such a collection of
vertices in D(P ) as a matching.) A stable matching in D(P ) is a matching
M such that for every vertex (w, f) ∈ V (D(P )) either (w, f) ∈M or (w, f)
has an out-neighbour that belongs to M . In the language of directed graphs,
M is a kernel.19

The following example serves three purposes. First, we use it to introduce
matching digraphs in a more rigorous manner than at the end of Section 3.
Second, the preference lists possess a cycle (in fact more than one), and
hence none of the existing sufficient conditions available in the literature
would immediately conclude that there is a unique stable matching. And yet
there is a unique stable matching. Third, given that there is a unique stable
matching, part (c) of Theorem 1 confirms that the IDUA will collapse each
individuals preference list to a singleton. We will use this fact to illustrate
how IDUA operates, and to show how visually intuitive the procedure is
when a matching problem is reformulated using digraphs.

Example 2. Let P2 be an instance of the matching problem in which there
are three workers and three firms. That is, W = {w1, w2, w3} and F =
{f1, f2, f3}. Preferences are as follows:

w1 : f3 �w1 f1 �w1 f2 f1 : w1 �f1 w2 �f1 w3

w2 : f1 �w2 f2 �w2 f3 f2 : w3 �f2 w1 �f2 w2

w3 : f1 �w3 f3 �w3 f2 f3 : w3 �f3 w2 �f3 w1

19Kernels were first introduced in von Neumann and Morgenstern (1944) as the gener-
alisation of solutions to cooperative games.
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It can be checked that P2 possesses a unique stable matching, µ∗, given
by,

µ∗ : (w1, f1), (w2, f2), (w3, f3) (6)

We emphasise that preferences of P2 are not acyclic. To see this, consider
the subpopulation {w1, w2, f1, f3}. The cycle here is given by,

f3 �w1 f1 and w2 �f3 w1 and f1 �w2 f3 and w1 �f1 w2 (7)

A relabelling of participants in (7), as was done in going from (4) to (5),
confirms the cycle.

Figure 2 illustrates the matching digraph for P2. The complete digraph
D(P2) is displayed in the left hand panel, while the digraph in the right
hand panel is a “condensed” version where the arcs implied by transitivity
have been suppressed for readability.

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

D(P2)

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

D(P2) with arcs implied by transitivity suppressed

Figure 2: The matching digraph D(P2) for the instance P2 of Example 2.

The vertex (i, j) in each digraph of Figure 2 denotes the pair (wi, fj).
That is, rows are indexed by workers and columns are indexed by firms. The
preferences of workers are depicted by horizontal arcs, the arc set AW , and
the preferences of firms are depicted by the vertical arcs, the arc set AF . A
matching in P2 corresponds to a set of vertices, M , no two of which are in
the same row nor the same column.

Since every participant’s preference is transitive, there cannot be a cycle
in any row (corresponding to a worker’s preferences) nor in any column
(corresponding to a firm’s preferences) of a matching digraph. Note however
that there can be cycles in the digraph as a whole. In Figure 2, we have
labelled one such preference cycle by colouring the arcs that comprise it in
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blue, and we note that this is precisely the preference cycle identified in (7).
So the acyclic condition due to Chung (2000), given in Definition 6, requires
that preferences are intertwined in such a way that the transitivity property
of individual preferences is inherited at the population level.

Given a stable matching problem P and its associated matching digraph
D(P ), we now introduce a reduction, R, that “prunes” the matching digraph
of extraneous information. Specifically, it identifies vertices in D(P ) that
represent worker-firm pairs that view each other as mutually unattractive
and deletes them.

For every vertex v ∈ V (D(P )), it will be useful to decompose d+D(v) into
d+D(v) = d+W (v) + d+F (v). That is, the out-degree of a vertex is split into the
horizontal out-degree and the vertical out-degree. (Note that for for a given
pair (w, f), the horizontal out-degree corresponds to the number of firms
that w prefers to f and the vertical out-degree corresponds to the number
of workers that f prefers to w.) We now have the following.

Definition 7. Given a matching digraph D(P ), we define R
(
D(P )

)
as the

result of the following procedure.
Choose (w, f) ∈ V (D(P )) with either d+F (v) = 0 or d+W (v) = 0, and if

d+F (v) = 0 then delete all vertices (w, fi) such that (w, fi)(w, f) ∈ AW . Oth-
erwise, (i.e. d+W (v) = 0) delete all vertices (wi, f) such that (wi, f)(w, f) ∈
AF .20

The reduction procedure, R, operates as follows. If d+F (v) = 0, then all
vertices that are the tail of an arc with head v in AW are to be deleted.
This is because if v = (w, f), and d+F (v) = 0, then worker w is firm f’s
most preferred worker and hence w can not be matched with any firm that
they prefer less than f in any stable matching. When d+W (v) = 0, analogous
vertex deletions are performed.

A version of IDUA, which we call IDUAR, repeatsR after settingD(P ) :=
R
(
D(P )

)
until further reductions are no longer possible. When IDUAR

stops we obtain the normal form of the initial D(P ) denoted by D∗(P ). By
definition, D∗(P ) = D(P ∗).

We emphasise that the reduction procedure IDUAR, generated by re-
peated applications of R, differs slightly from the IDUA procedure of Def-
inition 5. The difference is as follows. The way we defined IDUA in Def-
inition 5 is more in line with the way the IDDS procedure for games is

20If more than one vertex (w, f) ∈ V (D(P )) satisfies the condition above, then R(D(P ))
will depend on which of them is chosen. However, we can ignore this fact since our interest
lies in repeated application of R (see below) and, as per Lemma 2, the end result of
repeated application does not depend on the intermediate values.
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typically motivated in the sense that multiple deletions happen simultane-
ously.21 Specifically, in iteration k, IDUA deletes all vertices that cannot be
part of some stable matching. It does this by pivoting around all blocking
pairs simultaneously. This should be contrasted with the IDUAR, that in
iteration k finds one blocking pair and pivots only around it. But while
there is a formal difference between IDUA and IDUAR, from a practical
perspective the difference is immaterial as Lemma 2 confirms that the or-
der in which unattractive alternatives are deleted does not affect the final
output.

We now illustrate how IDUAR operates, using instance P2 from Exam-
ple 2. (Let us recall that these preferences are not acyclic and yet this
instance does possess a unique stable matching.) Figure 3 below contains
six panels that show repeated applications of R to the matching digraph of
P2, D(P2). As in Figure 2, vertex (i, j) denotes the pair (wi, fj). In each
panel the red arrow indicates the row or column where R is being applied.
The black vertex is the vertex with no arcs out of it in the row or column
that is being considered (i.e., it is the blocking pair that R pivots around).
The dotted vertices and arcs are the vertices and arcs that get deleted in
that iteration (the dotted vertices have arcs into the black vertex, and these
arcs are perpendicular to the row/column that determined the choice of the
black vertex). Once the repeated application can go no further, we have the
normal form of D(P2), D

∗(P2), that consists of the matching in (6).
Let us now be slightly more concrete about Figure 3. In the first panel,

we consider the second row that captures worker w2’s preferences. The
(horizontal) arcs in this row indicate that f1 is the most preferred firm to
w2, and so we pivot around vertex (w2, f1). We indicate this by colouring
this vertex black. Firm f1 recognises that worker w2 is, in effect, a lower
bound on who they can pair with. (Since if firm f1 were matched with any
worker that they prefer less than worker w2, then (w2, f1) would constitute
a blocking pair since w2 will leave any firm for f1.) Worker w3 is one such
worker. So firm f1 deems w3 unattractive and by the reciprocal nature of
this relation, w3 deems f1 unattractive. Hence by considering the second
row, we can delete the vertex (w3, f1) and any arcs incident on it.

In the second panel, consider the third row representing worker w3’s
preferences. At the onset, f1 was worker w3’s most preferred firm. But
the first application of R, depicted in the first panel, showed that this pair

21While algorithmically more care must be taken with operations that delete multiple
objects simultaneously, simultaneous deletion procedures are a closer fit to the higher
ordering reasoning systems that game theorists assume of rational agents.
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←

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

←

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 2) (3, 3)

←(1, 1) (1, 2)

(2, 1) (2, 2)

(3, 2) (3, 3)

↑

(1, 1) (1, 2)

(2, 2)

(3, 2) (3, 3)

↓

(1, 1)

(2, 2)

(3, 2) (3, 3)

(1, 1)

(2, 2)

(3, 3)

Figure 3: An illustration of how IDUAR operates.

can never be part of a stable matching as vertex (w3, f1) was deleted. As
such, w3’s most preferred feasible firm is f3, which we depict by colouring
the vertex (w3, f3) black. This means that firm f3 can at worst match
with worker w3. Thus we can delete all vertices with arcs in AF that have
head (w3, f3). (In fact, given that w3 is in fact f3’s most preferred feasible
partner, we can now conclude that they will certainly be paired in all stable
matchings.) Note that this deletes vertices (w1, f3) and (w2, f3), and doing
so this deletes three of the four arcs comprised the cycle in the preference
lists, i.e., the arcs that were coloured blue in the left hand panel of Figure
2. This highlights that cycles are not always a barrier to uniqueness.

The remaining panels should now be easily understood.

5 Conclusion and extensions for future work

Conclusion.
The two-sided matching framework of Gale and Shapley (1962) is one of
the classic models of economic theory. It has been applied widely to set-
tings ranging from school admissions, entry-level labour markets, refugee
resettlement, and others (see Roth (2008) for a survey). Yet despite all the
attention that the model has received, a classification of what structural
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properties guarantee a unique stable matching remained an open question.
In this paper we have resolved this open question.

It turns out that the key to answering the above question is first to reduce
a matching problem to its essential constituents. We do this by applying a re-
duction procedure, the iterated deletion of unattractive alternatives (IDUA),
that strips away the parts of the preference lists that are not relevant to the
set of stable matchings. We term the resultant (sub)matching problem the
normal form. Our main result, Theorem 1, shows that a matching prob-
lem has a unique stable matching if and only if preferences on the normal
form are acyclic if and only if the normal form is precisely the unique stable
matching and nothing more (i.e., IDUA collapses every market participant’s
preference list to a singleton).

Extensions and open problems.
The matching environment that we have considered in this paper (Definition
1) is precisely that originally considered by Gale and Shapley (1962). This
setting is defined by the following three features.

(i) a one-to-one market: each worker can take only one job and each firm
has only one position.

(ii) all preferences are complete: each worker prefers to be employed at any
firm over being unmatched, and each firm prefers to fill its position
with any worker over leaving the position unfilled.

(iii) a balanced market: there are exactly the same number of workers as
firms/positions.

There are many ways in which the Gale and Shapley (1962) environment
has since been extended where each more general variant involves relaxing
some combination of the three features above. As mentioned previously, it
can be shown that the result of this paper holds if preferences are incomplete
(relaxing feature (ii) above) and the market is imbalanced (relaxing feature
(iii) above). The caveat is that there may be some market participants that
are not included in the stable matching.

In Gutin et al. (2022) we consider many-to-one matching markets. While
our focus there is not on the issue of uniqueness, using that framework it
can be shown that the result of this paper extends to that of an unbalanced
many-to-one matching market in which preferences need not be complete.22

22Gutin et al. (2022) is, to the best of our knowledge, the first paper to use the digraph
approach for the study of many-to-one matching environments.
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This confirms that partially relaxing feature (i) is also possible. (Though
again there is the caveat that not all workers will be employed and/or not
all positions will be filled.) The most general environment, the so called
many-to-many matching markets, present a greater challenge as there is no
uniformly agreed upon notion of stability (Sotomayor, 1999; Echenique and
Oviedo, 2006; Konishi and Ünver, 2006). Thus, if and how our uniqueness
result carries over to many-to-many matching markets is an open problem.

Ashlagi et al. (2017) consider a variant of the matching problem with
feature (iii) above relaxed. Precisely, they consider an unbalanced one-to-one
market with n workers and n + 1 firms where all preferences are complete.
Such an environment has precisely (n!)n((n + 1)!)n+1 possible instances.
Amongst other things, Ashlagi et al. (2017) show that as n tends to infinity
the fraction of instances with a unique stable matching tends to 1. They
attribute this finding to a consequence of increased competition.

Our classification of unique stable matchings complements this result of
Ashlagi et al. (2017) in the following way. If their result is a statement
about how the core becomes small as an unbalanced market size grows,
then our Theorem 1 is a statement about why the core becomes small as an
unbalanced market size grows. That is, as the size of unbalanced markets
grows, for most instances the preferences on the normal form are acyclic.
This generates a puzzle. The normal form of an unbalanced n × (n + 1)
matching market with complete preferences is a balanced n× n market. So
how is it that an additional market participant typically induces an acyclic
normal form as n gets large?
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APPENDIX

A Proofs omitted from the main text

Lemma 1, Lemma 2, and Theorem 1 are each stated in the text in terms of
the standard primitives of the model: preferences. Since all of our results
are proved using the equivalent matching digraph formulation, below we
first restate each result as it appeared in the main text and we then state
the equivalent result in terms of matching digraphs. That is, Lemma 1
is reformulated as Lemma 1′, Lemma 2 as Lemma 2′, and Theorem 1 as
Theorem 1′.

Lemma 1. The iterated deletion of unattractive alternatives does not change
the set of stable matchings. That is, P and its associated normal form, P ∗,
contain exactly the same set of stable matchings.

Lemma 1′. The iterated deletion of unattractive alternatives does not
change the set of stable matchings. That is, D(P ) and D∗(P ) contain ex-
actly the same stable matchings.

Proof of Lemma 1′ (and hence of Lemma 1).

Proof. We will show that one iteration of R does not change the set of stable
matchings, which will imply that the lemma holds. Assume that there is
no arc in AF leaving (w, f) ∈ V (D(P )) and we have therefore deleted all
vertices (w, fi) such that (w, fi)(w, f) ∈ AW (see (i) in Definition 7). Let
D1 be the matching digraph before the reduction and let D2 denote the
matching digraph after the operation.

For the sake of contradiction assume that one of the deleted vertices, say
(w, fi), lies in a stable matching M1 of D1. Then for some j, we have (wj , f)
is also in M1. Now we will show that (w, f) is a blocking pair in M1. Since
(w, fi) and (wj , f) are in M1, (w, f) 6∈ M1. Moreover, f prefers w to wj as
(wj , f)(w, f) ∈ AF and w prefers f to fi as (w, fi)(w, f) ∈ AW . Therefore,
M1 does not exist (as there is a blocking pair). So no deleted vertex can
belong to a stable matching of D1.

Therefore, if M1 is a stable matching in D1, then M1 is also a stable
matching in D2 (as D2 is an induced subdigraph of D1 and M1 ⊆ V (D2)).
Conversely assume that M2 is a stable matching in D2. Clearly no vertex
in D2 is a blocking pair for M2. For the sake of contradiction assume that
(w, fi) is a blocking pair for M2 in D1 (where (w, fi) is deleted when con-
structing D2). Recall that (w, fi)(w, f) ∈ AW and there are no arcs in AF
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leaving (w, f) ∈ V (D(P )). As (w, f) is not a blocking pair for M2 in D2,
we note that (w, f) either belongs to M2 or there is a vertex (w, fj) ∈ M2,
where (w, f)(w, fj) ∈ AW . As (w, fi)(w, f) ∈ AW and (w, f)(w, fj) ∈ AW

we note that (w, fi)(w, fj) ∈ AW and therefore (w, fi) is not a blocking pair
for M2 in D1. This implies that there is no blocking pair for M2 in D1 and
therefore M2 is a stable matching in D1. This completes the proof.

Lemma 2. Let P be an instance of the matching problem. Then the normal
form of P , P ∗, is uniquely defined. That is, no matter in which order we
repeatedly delete unattractive alternatives from preference lists, we always
end up with the same P ∗.

Furthermore, suppose that f ∈
{
�∗w
}

and w ∈ {�∗f}. Then, either (w, f)
is part of some stable matching or the following property (s) holds.

(s): There exist firms fj1 and fj2 such that fj1 , fj2 ∈ {�∗w} with fj1 �∗w
f �∗w fj2 , and there exist workers wi1 and wi2 such that wi1 , wi2 ∈ {�∗f}
with wi1 �∗f w �∗f wi2 .

Lemma 2′. Let P be an instance of the matching problem. Then the
matching digraph of the normal form, D∗(P ), is uniquely defined. That
is, no matter in which order we repeatedly apply R to perform IDUA, we
always end up with the same D∗(P ).

Furthermore, if M ⊆ V (D(P )) denotes the vertices that belong to some
stable matching of P , then D∗(P ) contains a vertex (w, f) if and only if
(w, f) ∈M or the following property (s) holds.

(s): There exists vertices (wi1 , f), (wi2 , f), (w, fj1), (w, fj2) ∈ M , such that
(wi1 , f)(w, f)(wi2 , f) and (w, fj1)(w, f)(w, fj2) are paths in V (D(P )).

Proof of Lemma 2′ (and hence of Lemma 2).

Proof. Let P be an instance that contains a stable matching. Let M ⊆
V (D(P )) be the vertices of D(P ) that belong to some stable matching of P .
Let M∗ denote the set of vertices (w, f) ∈ D(P ) where either (w, f) ∈M or
there are vertices (w, fi) ∈M and (wj , f) ∈M such that (w, fi)(w, f) ∈ AW

and (wj , f)(w, f) ∈ AF . We will show that no matter in what order we
perform the reductions we always obtain V (D∗(P )) = M∗ and A(D∗(P ))
contain the arcs of D(P ) with both tail and head in M∗.

Let m∗ be an arbitrary vertex in M∗. If m∗ would be deleted by some
Reduction R, then either all vertices incident to arcs in AW that enter m∗

will also be deleted or all vertices incident to arcs in AF that enter m∗ will be
deleted (by the definition of Reduction R). In both cases at least one vertex
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from M will be deleted, a contradiction to Lemma 1′. So, if m∗ ∈M∗ then
m∗ is not deleted by any Reduction R and m∗ ∈ V (D∗(P )). This implies
that M∗ ⊆ V (D∗(P )).

For the sake of contradiction assume that there exists a pair (w, f) ∈
V (D∗(P )) \M∗. As (w, f) 6∈M∗ we note that (w, f) 6∈M and without loss
of generality we may assume that there is no arc a ∈ AW such that (w, f)
is the head of a and the tail of a lies in M . Since MF (see the definition in
Lemma 3) is a stable matching it contains a vertex (w, fi) ∈MF . As (w, f)
has no in-neighbour of the form (w, fj) belonging to M , and therefore also
not belonging to MF , we have that (w, fi) is an out-neighbour of (w, f).
However as there are no arc in AF leaving (w, fi) and (w, f)(w, fi) ∈ AW ,
we note that (w, f) will be deleted by Reduction R, a contradiction to
(w, f) ∈ V (D∗(P )). So V (D∗(P )) = M∗ as desired.

We will now prove the second part of the lemma. If (w, f) ∈ M or if
(w, f) satisfies Property (s) then clearly (w, f) ∈ M∗ = V (D∗(P )) (due to
the existence of (wi1 , f) and (w, fj1) if Property (s) holds).

Conversely let (w, f) ∈M∗ be arbitrary. We want to show that (w, f) ∈
M or that Property (s) holds. For the sake of contradiction assume that this
is not the case. As (w, f) ∈ M∗ and (w, f) 6∈ M we note that there exists
(wi1 , f), (w, fj1) ∈ M , such that (wi1 , f)(w, f) ∈ AF and (w, fj1)(w, f) ∈
AW . Let M(wi1

,f) denote the stable matching in P containing (wi1 , f) (which
exists as (wi1 , f) ∈ M). In M(wi1

,f) let (w, fj2) be the vertex containing w.
As (w, f) is not a blocking pair in M(wi1

,f) we must have (w, f)(w, fj2) ∈ AW

and therefore (w, fj1)(w, f)(w, fj2) is a path in V (D(P )).
Analogously, let M(w,fj1 )

denote the stable matching in P containing
(w, fj1). In M(w,fj1 )

let (wi2 , f) be the vertex containing f. As (w, f) is not
a blocking pair in M(w,fj1 )

we note that (wi1 , f)(w, f)(wi2 , f) is a path in
V (D(P )). Therefore Property (s) holds, a contradiction.

Theorem 1. Let P be an instance of the matching problem and let P ∗ be its
associated normal form. Then the following three statements are equivalent.

(a) P has a unique stable matching.

(b) The normal form of P , P ∗, is acyclic.

(c) In the normal form, P ∗, every market participant’s preference list a
singleton.

Theorem 1′. Let P be an instance of the matching problem, and let D(P )
be the associated matching digraph, and let D∗(P ) be the matching digraph
of the normal form. Then the following three statements are equivalent.
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(a) P has a unique stable matching.

(b) D∗(P ) contains no cycle.

(c) D∗(P ) consists of n isolated vertices (that is, |V (D∗(P ))| = n and
|A(D∗(P ))| = 0).

The proof of Theorem 1′ requires the following two additional lemmas,
Lemma 3 and Lemma 4. Before stating and proving these Lemmas, we
introduce the following notation. Let A∗W denote the arcs from AW with
both endpoints still in D∗(P ). Analogously let A∗F denote the arcs from
AF with both endpoints still in D∗(P ). That is A(D∗(P )) = A∗W ∪ A∗F .
Let d∗,+W (x) denote the number of arcs out of x ∈ V (D∗(P )) in A∗W and

analogously let d∗,+F (x) denote the number of arcs out of x ∈ V (D∗(P )) in
A∗F .

Lemma 3. Let P be an instance of the matching problem. Then the fol-
lowing two sets, MW and MF , are both stable matchings in P .

MW = {x ∈ V (D∗(P )) | d∗,+W (x) = 0}

MF = {x ∈ V (D∗(P )) | d∗,+F (x) = 0}

Proof. By Lemma 1, we note that there does exist some stable matching in
D∗(P ). So for every w ∈ W some vertex (w, f) belongs to V (D∗(P )). Let
MW be defined as above and note that for every w ∈W there exists exactly
one vertex (w, fw) in MW . We first show that if wi, wj ∈ W are distinct
then fwi and fwj are distinct. For the sake of contradiction, assume that
this is not the case, and fwi = fwj . Let f = fwi = fwj and without loss
of generality assume that (wi, f)(wj , f) ∈ A(D∗(P )). However this implies
that we could perform Reduction R on (wj , f), which would imply that we
would have deleted (wi, f), a contradiction. Therefore fwi 6= fwj for all
distinct wi and wj . Thus MW is a matching.

By the proof of Lemma 2, every (w, f) ∈ V (D∗(P )) either belongs to
MW or is an in-neighbour of (w, fw) which belongs MW . Thus, there are no
blocking pairs in MW , which implies that MW is indeed a stable matching
in D∗(P ). By Lemma 1 MW is therefore also a stable matching in P .

The fact that MF is a stable matching in P can be shown analogously.

Lemma 4. Let P be an instance of the matching problem. If A(D∗(P )) is
nonempty, then P contains at least two distinct stable matchings.
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Proof. Let P be an instance that contains a stable matching, such that
A(D∗(P )) 6= ∅. Without loss of generality assume that (w, fi)(w, fj) is an
arc inA(D∗(P )). Let (w, fk) ∈ V (D∗(P )) be chosen such that d∗,+W ((w, fk)) =
0 (j = k is possible) and note that i 6= k. This implies that (w, fk) ∈ MW

(defined in Lemma 3).
If MW 6= MF then P contains at least two distinct stable matchings

(namely MW and MF ). So, we may assume that MW = MF . Hence,
(w, fk) ∈ MF . However this implies that (w, fi) will be deleted by Reduc-
tion R, as (w, fi) is an in-neighbour of (w, fk) and there is no arc a ∈ AF

such that (w, fk) is the tail of a. This is a contradiction to the fact that we
cannot perform Reduction R on D∗(P ).

Proof of Theorem 1′ (and hence of Theorem 1).

Proof. We first prove that (a) and (b) are equivalent. Assume that (b) holds.
If (wi, fi) and (wj , fj) are distinct vertices in V (D∗(P )) then wi 6= wj and
fi 6= fj as otherwise there would be an arc between the two vertices. So
the n vertices in V (D∗(P )) form a matching of P . This matching is a
stable matching, by Lemma 1′, as there are no blocking edges. Therefore
(b) implies (a).

Now assume that (a) holds. By Lemma 4 we note that A(D∗(P )) = ∅.
If |V (D∗(P ))| < n, then P contains no stable matching (by Lemma 1′), a
contradiction. If |V (D∗(P ))| > n, then A(D∗(P )) 6= ∅, another contradic-
tion (as there must then be two vertices in D∗(P ) with the same worker).
So |V (D∗(P ))| = n and (b) holds.

Clearly (b) implies (c). We will show that (c) implies (b), so assume
that (c) holds. If A(D∗(P )) = ∅, then (a) holds by Lemma 4, and therefore
(b) also holds by the above. So we may assume that A(D∗(P )) 6= ∅. Let
p0p1 . . . pr be a path in D∗(P ) with maximum number of vertices and, as
A(D∗(P )) 6= ∅, we have r ≥ 1. If d+D∗(P )(pr) > 0, then the out-neighbour of

pr must lie in V (P ), due to the maximality of r, which gives us a cycle in
D∗(P ), contradicting the fact that (c) holds. So d+D∗(P )(pr) = 0. However,
this implies that pr−1 will be deleted by Reduction R, as pr−1pr is an arc
and there is no arc with tail pr in either AW or AF . This is a contradiction
to the fact that we cannot perform Reduction R on D∗(P ), which completes
the proof.
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B Equivalent instances

We now sketch how an analyst can recover the full set of stable matching
problems for which a given matching is the unique stable matching.

Begin with a particular matching, µ, and let us show how to “build up
from scratch” the full collection of matching problems satisfying Definition 1
(i.e., 2n complete preference lists) with the property that the matching in
question is the unique stable matching for each.23

The above is performed by effectively running IDUA “in reverse”. Such
a procedure works because any matching can be viewed as a collection of
preference lists with only one participant per list. One can then augment the
one-participant preference lists by continually adding participants in such
a way that the IDUA procedure would have deleted the additional entries.
While this does not yield a succinct condition on preferences like acyclicity
(or any of the conditions provided by the papers listed in Footnote 3) and
the procedure may be computationally intensive, it is exhaustive. That is,
given any matching one can construct the entire set of equivalent instances,
where equivalence is defined as possessing the same unique stable matching.

Lemma 1 ensures that if two instances of the matching problem possess
the same normal form then they must possess the same set of stable match-
ings; but the reverse implication need not hold. However, parts (a) and
(c) of Theorem 1 confirm that when an instance of the matching problem
possesses a unique stable matching, the IDUA procedure collapses each par-
ticipant’s preference list to a singleton. And as such the reverse implication
of Lemma 1 does hold for instances with a unique stable matching.

The fact above is useful as it allows the analyst to reconstruct the full set
of complete preference lists for which a given matching is the unique stable
matching. Let us elaborate on this. Consider Figure 3 and observe what
happened in going from the second to last panel to the last panel. By the
rules of the deletion procedure, the vertex (3, 2) was deleted and hence so
were the arcs that made up the path (2, 2) → (3, 2), (3, 2) → (3, 3) (which
signify that f3 �w3 f2 and w3 �w2 w2). Note however, that the matching
digraph in the final panel would have been the same if the path in the second
to last panel had been the reverse, (3, 3)→ (3, 2), (3, 2)→ (2, 2) (f2 �w3 f3
and w2 �w2 w3), or even if the path had instead been from vertex (2, 2) to
(3, 3) via the vertex (2, 3) (f3 �w2 f2 and w3 �w3 w2).

This insight can be built upon. While R reduces a matching problem

23We note that matching problems with incomplete preferences for which µ is the unique
stable matching can also be recovered, but we omit the details.
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without altering the set of stable matchings, one can define an operation,
call it R−1, that expands a stable matching subproblem in such a way that
the set of stable matchings is not altered. The inverse operation R−1 simply
adds participants to preference lists in such a way that they would be deleted
by an application of R, though we note that R−1 is a correspondence and
hence R−1(D) denotes the set of all appropriate digraphs. Just as R can
be applied repeatedly, the analyst can repeatedly apply R−1 until all 2n
preference lists are complete, at which point the analyst has generated an
instance of the matching problem for which the identified matching is the
unique stable matching.

We will illustrate this inverse procedure for a specific example. When
there are n workers and n firms, the number of possible instances where all
participants have complete preferences is (n!)2n, so for reasons of space we
consider an example with n = 2. We let W = {w1, w2} and F = {f1, f2},
and we consider the matching µ∗ = {(w1, f1), (w2, f2)}. We then ask: what
is the full set of instances for which µ∗ is the unique stable matching? Let
us now show how to reverse engineer the set of preferences for which µ∗ is
the unique stable matching.

When n = 2, there are a total of (2!)2×2 = 16 possible instances. Since
the matching digraph for an instance with n = 2 is a 2 × 2 grid, and a
minimum cycle has 4 vertices, there are only two possible instances that
possess a cycle (one going “clockwise” and the other “anti-clockwise”). This
means that for n = 2 there are 14 instances with a unique stable matching.
Since there are only two possible matchings when n = 2, we can be sure
that there are exactly 7 instances for which µ∗ = {(w1, f1), (w2, f2)} is the
unique stable matching. These are given in Figure 4 below, where each
panel presents one such instance both in terms of preferences and using
the digraph representation. In every digraph the vertices that comprise the
original matching, µ∗, are shaded grey while the vertices that are added
back are hollow. The arcs represent preferences.

The above illustrates how an analyst can “build up from scratch” the full
set of equivalent instances of a the matching problem with a unique stable
matching. We note that while the described procedure is computationally
intensive, it is exhaustive. We conclude by pointing out that the procedure
allows the identification of all instances for which the stated matching is the
unique stable matching, and not merely those matching problems wherein
every preference list is complete (which is what we have shown).
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(1, 1) (1, 2)

(2, 1) (2, 2)

(1, 1) (1, 2)

(2, 1) (2, 2)

(1, 1) (1, 2)

(2, 1) (2, 2)

(1, 1) (1, 2)

(2, 1) (2, 2)

w1 : f1 �w1 f2

w2 : f1 �w2 f2

f1 : w1 �f1 w2

f2 : w1 �f2 w2

w1 : f1 �w1 f2

w2 : f2 �w2 f1

f1 : w1 �f1 w2

f2 : w1 �f2 w2

w1 : f1 �w1 f2

w2 : f1 �w2 f2

f1 : w1 �f1 w2

f2 : w2 �f2 w1

w1 : f1 �w1 f2

w2 : f2 �w2 f1

f1 : w1 �f1 w2

f2 : w2 �f2 w1

(1, 1) (1, 2)

(2, 1) (2, 2)

(1, 1) (1, 2)

(2, 1) (2, 2)

(1, 1) (1, 2)

(2, 1) (2, 2)

w1 : f1 �w1 f2

w2 : f2 �w2 f1

f1 : w2 �f1 w1

f2 : w2 �f2 w1

w1 : f2 �w1 f1

w2 : f2 �w2 f1

f1 : w2 �f1 w1

f2 : w2 �f2 w1

w1 : f2 �w1 f1

w2 : f2 �w2 f1

f1 : w1 �f1 w2

f2 : w2 �f2 w1

Figure 4: The 7 instances for which µ∗ is the unique stable matching.
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