Construction of reversible self-dual codes

Hyun Jin Kim ${ }^{\text {a,1 }}$, Whan-Hyuk Choi ${ }^{\text {b,c,*,2 }}$, Yoonjin Lee ${ }^{\mathrm{d}, 3}$
${ }^{\text {a }}$ University College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
${ }^{\text {b }}$ Department of Mathematics, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, 24341, Republic of Korea
${ }^{\text {c }}$ Department of Mathematics, Sogang University, 35 Baekbeom-ro, Seoul 04107, Republic of Korea
${ }^{\text {d }}$ Department of Mathematics, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 03760, Republic of Korea

A R T I C L E I N F O

Article history:

Received 16 June 2019
Received in revised form 27 April
2020
Accepted 25 June 2020
Available online 14 July 2020
Communicated by Chaoping Xing

MSC:

primary 94B05
secondary 11T71

Abstract

$\overline{\text { We study a construction method of binary reversible self-dual }}$ codes in this paper. Reversible codes have good properties in applications, and it is interesting to note that a class of reversible codes is closely connected to BCH codes and LCD codes. We first characterize binary reversible self-dual codes. Using these characteristics of reversible self-dual codes, we find an explicit method for constructing all the binary reversible self-dual codes up to equivalence. Furthermore, using this construction, we obtain nine optimal reversible self-dual codes of length 70 which are all inequivalent, and these codes are all new with respect to binary self-dual

[^0]Keywords:
Reversible code Self-dual code Automorphism Equivalence
Optimal code
codes; they all have the same parameter [70,35,12] and their automorphism groups have the same order two.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Reversible codes were introduced by Massey [13], and it is known that they have some good properties in certain data storage and retrieval systems. Furthermore, some reversible codes have a good capability of correcting solid burst errors, and they have high transmission efficiency $[15,18]$. Recently, it is noted that reversible codes are very useful in applied mathematics such as cryptography $[4,16]$ and bio-mathematics, especially DNA coding theory [8,12]; this is due to the fact that a DNA code was constructed by using reversible codewords of a linear code [6].

It is interesting to note that a class of reversible codes is closely connected to BCH codes and LCD codes. In fact, a class of reversible codes is an important subclass of BCH codes. In 1992, Massey introduced another class of codes, linear complementary dual codes ($L C D$ codes for short) [14]; an LCD code is defined to be a linear code C whose dual code C^{\perp} satisfies $C \cap C^{\perp}=\{0\}$. Massey and Yang proved that a cyclic code is an LCD code if and only if it is a reversible code [19]. Noting that a self-dual code C is defined to satisfy $C=C^{\perp}$, LCD codes and self-dual codes have an extreme contrast in terms of the intersection of C and its dual C^{\perp}. Moreover, a self-dual code is one of the major subjects in coding theory due to its variety of nice properties as codes. However, there has been no investigation on the self-duality of reversible codes yet as far as we know.

We study a construction method of binary reversible self-dual codes in this paper. We first characterize binary reversible self-dual codes. Using these characteristics of reversible self-dual codes, we find an explicit method for constructing all the binary reversible self-dual codes up to equivalence. We also introduce a notion of R-equivalence for reversible codes; this notion is distinguished from a usual notion of equivalence of codes. We show that a reversible self-dual code has a generator matrix in the standard form under the R-equivalence. We find an explicit method for constructing all the binary reversible self-dual codes up to R-equivalence. Furthermore, using this construction, we obtain nine optimal reversible self-dual codes of length 70 which are all inequivalent, and these codes are all new with respect to binary self-dual codes; they all have the same parameter $[70,35,12]$ and their automorphism groups have the same order two.

We discuss the comparison of our result with the result of Buyuklieva et al. [1,2]. In fact, reversible self-dual codes can be regarded as self-dual codes with an automorphism of order two without fixed points. Buyuklieva et al. obtained some interesting results on this class of codes [1,2]. However, we point out that there is some significant difference between their result and ours. First of all, we construct reversible self-dual codes of
length $2 n+2$ from reversible self-dual codes of length $2 n$ taking it into consideration the equivalence relation between them. This is a successive construction in the sense that for finding all reversible self-dual codes of all even lengths, we can keep using this method by successively increasing lengths by two. On the other hand, Buyuklieva et al. focus on finding extremal self-dual codes of length $2 n$ from self-orthogonal codes of length n in $[1,2]$; their construction is a non-successive one in the following sense. In their method, for construction of all extremal self-dual codes of length $2 n$ one should search for all self-orthogonal codes of length n, and in order to find all extremal self-dual codes of length $2 n+2$ one need all self-orthogonal codes of length $n+1$, and so forth; that is, each step has to be restarted. Furthermore, their construction is also involved with a heuristic algorithm, while our method is an explicit and deterministic one. Lastly, in our construction, it was a crucial issue to preserve the reversible form of self-dual codes due to their applications to DNA codes, while in their work, it was not necessary.

Our paper is organized as follows. We introduce some basic notions and definitions in Section 2. We then study various properties of reversible self-dual codes and define a notion of R-equivalence of reversible codes in Section 3; we prove some lemmas which are necessary for the proof of our main results in Section 4. Section 4 presents our main results, where we find a construction method of binary reversible self-dual codes, and we also show that every binary reversible self-dual code can be obtained by this method. In Section 5, we obtain nine new optimal reversible binary self-dual codes with parameter [70, 35, 12] are presented. All computations are done using MAGMA [3].

2. Preliminaries

A binary linear code of length n is a subspace of \mathbb{F}_{2}^{n}. An element of code is called a codeword. The space \mathbb{F}_{2}^{n} is equipped with the standard inner product, $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$, where $\mathbf{x}=\left(x_{i}\right), \mathbf{y}=\left(y_{i}\right)$ are vectors in \mathbb{F}_{2}^{n}. Let \mathcal{C} be a code of length n over \mathbb{F}_{2}. Then the dual code \mathcal{C}^{\perp} is defined by

$$
\mathcal{C}^{\perp}=\left\{\mathbf{v} \in \mathbb{F}_{2}^{n} \mid \mathbf{v} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in C\right\}
$$

\mathcal{C} is called self-orthogonal if $\mathcal{C} \subset \mathcal{C}^{\perp}$ and self-dual if $\mathcal{C}=\mathcal{C}^{\perp}$.
Two codes \mathcal{C} and \mathcal{C}^{\prime} are called permutation equivalent and denoted by $\mathcal{C} \simeq \mathcal{C}^{\prime}$ if one can be obtained from the other by a permutation of coordinates. A permutation $\sigma \in S_{n}$ is called an automorphism of \mathcal{C} if $\mathcal{C}=\mathcal{C} \sigma$, where $\mathcal{C} \sigma=\{c \sigma \mid c \in \mathcal{C}\}$. The set of all automorphisms of \mathcal{C} forms the automorphism $\operatorname{group} \operatorname{Aut}(\mathcal{C})$ of \mathcal{C}. A code is called reversible if it is invariant as a set under a reversal of each codeword. In particular, a code \mathcal{C} of length $2 n$ for an integer n, \mathcal{C} is reversible if $\mathcal{C}=\mathcal{C} \tau$ for $\tau=(1,2 n)(2,2 n-$ 1) $\cdots(k, 2 n-k+1) \cdots(n, n+1) \in S_{2 n}$. A self-dual code which is reversible is called a reversible self-dual code. Since any self-dual code has an even length $2 n$ for an integer n, it is obvious that a self-dual code \mathcal{C} is reversible self-dual if and only if $\tau \in \operatorname{Aut}(\mathcal{C})$.

Let A be a matrix of size $m \times n$ denoted by $\left(a_{i j}\right)_{m \times n}$. Then A^{T} is the transpose of A, i.e., $A^{T}=\left(a_{j i}\right)_{n \times m}, A^{F}$ is the flip-transpose of A, which flips A across its antidiagonal, i.e., $A^{F}=\left(a_{n-j+1, m-i+1}\right)_{n \times m}$ and A^{r} is the column reversed matrix of A, i.e., $A^{r}=\left(a_{i, n-j+1}\right)_{m \times n}$. These notations are also used on vectors regarding a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$ as a $1 \times n$ matrix over \mathbb{F}_{2}. Let I_{n} be the identity matrix and A be a square matrix of order n. Then a matrix A is called orthogonal if $A A^{T}=I_{n}, A$ is called symmetric if $A=A^{T}$, and A is called persymmetric if $A=A^{F}$.

Let A and B be $n \times n$ matrices and R_{n} be the $n \times n$ anti-diagonal matrix whose anti-diagonal elements are all 1, i.e., $R_{n}=I_{n}^{r}$. Then the following properties are straightforward:

$$
\begin{gathered}
R_{n}^{T}=R_{n}^{F}=R_{n}, R_{n}^{2}=I_{n}, A^{F}=R_{n} A^{T} R_{n}, A^{r}=A R_{n} \\
\left(A^{F}\right)^{F}=A,\left(A^{T}\right)^{F}=\left(A^{F}\right)^{T},(A+B)^{F}=A^{F}+B^{F},(A B)^{F}=B^{F} A^{F}
\end{gathered}
$$

We use the following notations throughout this paper.

Notations	
\mathcal{C}	a binary linear code
Aut (\mathcal{C})	the automorphism group of \mathcal{C}
S_{n}	the symmetric group of degree n
τ	the permutation $(1,2 n)(2,2 n-1) \cdots(n, n+1) \in S_{2 n}$
σ_{i}	a permutation $(i, 2 n-i+1) \in S_{2 n}$
$\sigma_{i, j}$	a permutation $(i, j)(2 n-i+1,2 n-j+1) \in S_{2 n}$
I_{n}	the identity matrix of degree n
R_{n}	the column reversed matrix of I_{n}
A^{T}	the transpose of a matrix A
A^{F}	the flip-transpose of a matrix A
A^{r}	the column reversed matrix of a matrix A

3. Some properties of reversible self-dual codes and their R-equivalence

In this section, we discuss some properties of reversible self-dual codes and introduce a notion of R-equivalence for reversible self-dual codes. We prove some lemmas which are necessary for the proof of our main results in Section 4.

A generator matrix of \mathcal{C} is a matrix whose rows form a basis of \mathcal{C}. It is well-known that a self-dual code of length $2 n$ over a field has a standard generator matrix, up to equivalence, in the following form:

$$
\begin{equation*}
\left(I_{n} \mid A\right) \tag{1}
\end{equation*}
$$

where A is an $n \times n$ orthogonal matrix.
Lemma 3.1. A dual code of a reversible code is also reversible.

Proof. Let \mathcal{C} be a reversible code. For any $\mathbf{u} \in \mathcal{C}^{\perp}$, we have that $\mathbf{u} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in \mathcal{C}$. This implies $\mathbf{u}^{r} \cdot \mathbf{x}^{r}=0$ for all $\mathbf{x} \in \mathcal{C}$. Since \mathcal{C} is reversible, $\mathbf{u}^{r} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in \mathcal{C}$. Therefore, $\mathbf{u}^{r} \in \mathcal{C}^{\perp}$.

Lemma 3.2. Let A be an $n \times n$ binary matrix. Then any two of the following statements imply the third.
(i) A is orthogonal.
(ii) $\left(A^{r}\right)^{2}=I_{n}$.
(iii) A is persymmetric.

Proof. Assume that A is orthogonal. We then have that $A^{-1}=A^{T}$ and $R_{n}^{-1}=R_{n}$. Then

$$
\begin{aligned}
\left(A^{r}\right)^{2}=I_{n} & \Leftrightarrow\left(A R_{n}\right)^{-1}=A R_{n} \\
& \Leftrightarrow R_{n} A^{-1}=A R_{n} \\
& \Leftrightarrow R_{n}\left(A^{T}\right)=A R_{n} \\
& \Leftrightarrow R_{n} A^{T} R_{n}=A \\
& \Leftrightarrow A^{F}=A .
\end{aligned}
$$

Now we show that (ii) and (iii) imply (i).
Assume that (ii) and (iii) hold. Then $A=A^{F}=R_{n} A^{T} R_{n}$ and

$$
\begin{aligned}
\left(A^{r}\right)^{2}=I_{n} & \Rightarrow\left(A R_{n}\right)^{-1}=A R_{n} \\
& \Rightarrow R_{n} A^{-1}=\left(R_{n} A^{T} R_{n}\right) R_{n} \\
& \Rightarrow R_{n} A^{-1}=R_{n} A^{T} \\
& \Rightarrow A^{-1}=A^{T} \\
& \Rightarrow A A^{T}=I_{n}
\end{aligned}
$$

thus A is orthogonal and this completes the proof.
Lemma 3.3. Let \mathcal{C} be a self-dual code of length $2 n$ with generator matrix in the standard form $\left(I_{n} \mid A\right)$. Then \mathcal{C} is reversible if and only if the matrix A satisfies one of the followings:
(i) $\left(A^{r}\right)^{2}=I_{n}$
(ii) A is persymmetric.

Proof. Suppose that a self-dual code \mathcal{C} is reversible. Then the reversed generator matrix G of \mathcal{C} with

$$
G=\left(A^{r} \mid R_{n}\right)
$$

generates \mathcal{C} as well. Recall that A is orthogonal since \mathcal{C} is self-dual; therefore, A is nonsingular and so is A^{r}. Thus, $\left(A^{r}\right)^{-1} G$ is a generator matrix of \mathcal{C} in the standard form since

$$
\left(A^{r}\right)^{-1} G=\left(\left(A^{r}\right)^{-1} A^{r} \mid\left(A^{r}\right)^{-1} R_{n}\right)=\left(I_{n} \mid\left(A^{r}\right)^{-1} R_{n}\right) .
$$

We note that the row vectors of $\left(A^{r}\right)^{-1} G$ and those of $\left(I_{n} \mid A\right)$ generate the same code \mathcal{C}; this implies

$$
\left(A^{r}\right)^{-1} R_{n}=A
$$

Thus, we have

$$
\left(A^{r}\right)^{-1} R_{n}=A \Leftrightarrow\left(A R_{n}\right)^{-1}=A R_{n} \Leftrightarrow\left(A^{r}\right)^{2}=I_{n},
$$

and hence (i) holds. By the previous lemma, (ii) also follows. The other direction follows immediately in a similar way.

A code with generator matrix $\left(I_{n} \mid R_{n}\right)$ is also a reversible self-dual code of length $2 n$; we call this code the trivial reversible self-dual code. Using these trivial codes, we obtain the following corollary.

Corollary 3.4. There exist binary reversible self-dual codes for all even lengths.

Corollary 3.5. Let $J_{n}=(1)_{n \times n}$ be an $n \times n$ matrix over \mathbb{F}_{2} consisting of all 1 entries. Then a code with generator matrix $\left(I_{n} \mid I_{n}+J_{n}\right)$ is a reversible self-dual code if and only if n is even.

Proof. We note that $\left(J_{n}+I_{n}\right)\left(J_{n}+I_{n}\right)^{T}=J_{n} J_{n}^{T}+I_{n}$ and $J_{n} J_{n}^{T}+I_{n}$ is equal to I_{n} if and only if n is even. Thus, \mathcal{C} is self-dual if and only if n is even. Clearly, $J_{n}+I_{n}$ is a persymmetric matrix for all n. By Lemma $3.3, \mathcal{C}$ is a reversible self-dual code if and only if n is even.

The following example shows that the class of reversible self-dual codes may contain some optimal codes. The extended Hamming [8,4,4] code and extremal self-dual codes of lengths 24 and 48 are also reversible self-dual codes up to equivalence, which can be shown by using Lemma 3.3.

Example 3.6. The extended Hamming [8,4,4] code is a binary reversible self-dual code of length 8. The generator matrix of extended Hamming $[8,4]$ code is

$$
\left(I_{4} \mid A\right)=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

and we can check that the matrix A is orthogonal and persymmetric.
The extremal $[24,12,8]$ extended Golay code is a reversible self-dual code with generator matrix $\left(I_{n} \mid A\right)$, where A is given as follows:

$$
\left(\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The extremal $[48,24,12]$ extended quadratic residue code is also a reversible self-dual code with generator matrix $\left(I_{n} \mid A\right)$, where A is given as follows:

$$
\left(\begin{array}{llllllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

From now on, we discuss the equivalence of reversible codes. Equivalence of reversible codes is to be distinguished from a usual notion of equivalence of codes. The main reason why they should be distinguished is that a code which is equivalent to a reversible code may not be reversible any more. For example, we consider two $\operatorname{codes} \mathcal{C}$ and \mathcal{C}^{\prime} generated by the matrices G and G^{\prime}, respectively:

$$
G=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \text { and } G^{\prime}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Clearly, the codes \mathcal{C} and \mathcal{C}^{\prime} are equivalent to each other. However, the code \mathcal{C} is a trivial reversible self-dual code, but the code \mathcal{C}^{\prime} is not reversible. We thus need to define a notion of equivalence which preserves reversibility of codes. Now we define a notion of R-equivalence of reversible codes as follows.

Definition 3.7. Let $\sigma_{i}=(i, 2 n-i+1)$ and $\sigma_{i, j}=(i, j)(2 n-i+1,2 n-j+1)$ be elements of the symmetric group $S_{2 n}$ for $1 \leq i, j \leq n$. Let \mathcal{C} be a reversible code of length $2 n$. Then any composition of these permutations acting on \mathcal{C} preserves the reversibility. If two reversible codes \mathcal{C} and \mathcal{C}^{\prime} are equivalent under permutations σ_{i} 's and $\sigma_{i, j}$'s, then they are called R-equivalent and denoted by $\mathcal{C} \simeq{ }_{R} \mathcal{C}^{\prime}$.

In order to preserve the reversibility of code, we define elementary row operations (R1), (R2), and reversible column permutations (RC1), (RC2) on its generator matrix as follows.
(R1) Permutation of the rows.
(R2) Addition of a row to another.
(RC1) Permutation of the i th and the $(2 n-i+1)$ th columns for $1 \leq i \leq n$.
(RC2) Permutation of the i th and the j th columns and the $(2 n-i+1)$ th and the $(2 n-j+1)$ th columns simultaneously for $1 \leq i, j \leq n$.

We note that two codes are R-equivalent if and only if their generator matrices can be transformed from one to the other by elementary row operations and reversible column permutations (RC 1) and (RC 2).

Remark 3.8. In general, any linear code has a generator matrix in the standard form in (1) up to equivalence. However, it is not guaranteed that a reversible code has a generator matrix in the standard form in (1) up to R-equivalence. For example, the matrix

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

generates a reversible code; but there is no way to transform G to the standard form up to R-equivalence. We note that this code is not self-dual. The following Lemma 3.9 shows that if a reversible code is self-dual, then it always has a generator matrix in the standard form up to R-equivalence. We will use this lemma for the proof of our main Theorem 4.7.

Lemma 3.9. Every reversible self-dual code of length $2 n$ is R-equivalent to a reversible self-dual code which has a generator matrix in the standard form

$$
\left(I_{n} \mid A\right),
$$

where A is an orthogonal and persymmetric matrix.
Proof. Let $G=(M \mid N)$ be a generator matrix of a reversible self-dual code \mathcal{C} of length $2 n$, where M and N are $n \times n$ matrices. It is enough to show that by applying elementary row operations and reversible column permutations (RC1) and (RC2), G can be transformed to a matrix

$$
G^{\prime}=\left(M^{\prime} \mid N^{\prime}\right)
$$

with $\operatorname{rank}\left(M^{\prime}\right)=n$.
Let

$$
\mathscr{S}=\left\{\widetilde{G} \mid \widetilde{G}=(\widetilde{M} \mid \widetilde{N}) \simeq_{R} G\right\}
$$

be a set of $n \times 2 n$ matrices which are R-equivalent to G, where \widetilde{M} and \widetilde{N} are $n \times n$ matrices. We take $G^{\prime}=\left(M^{\prime} \mid N^{\prime}\right) \in \mathscr{S}$ such that $\operatorname{rank}\left(M^{\prime}\right) \geq \operatorname{rank}(\widetilde{M})$ for all $\widetilde{G} \in \mathscr{S}$. If $\operatorname{rank}\left(M^{\prime}\right)=n$, then we are done. If $\operatorname{rank}\left(M^{\prime}\right)=k<n$, then we will find a contradiction.

Now, assume that $\operatorname{rank}\left(M^{\prime}\right)=k<n$. Applying the operations (R1), (R2) and (RC2), G^{\prime} is transformed to a reduced echelon form:

$$
G^{\prime \prime}=\left(\begin{array}{c|c|c|c}
I_{k} & A_{k \times(n-k)} & B_{k \times(n-k)} & C_{k \times k} \\
\hline O & O & D_{(n-k) \times(n-k)} & E_{(n-k) \times k}
\end{array}\right) .
$$

The submatrix D must be a zero matrix; if D has a column which has a nonzero element, then applying the operation (RC1) to the column leads to a contradiction to the maximality of $\operatorname{rank}\left(M^{\prime}\right)$. Thus we have

$$
G^{\prime \prime}=\left(\begin{array}{c|c|c|c}
I_{k} & A_{k \times(n-k)} & B_{k \times(n-k)} & C_{k \times k} \\
\hline O & O & O & E_{(n-k) \times k}
\end{array}\right) .
$$

Let \mathbf{v}_{i} be the i th row vector of $G^{\prime \prime}$. Since $G^{\prime \prime}$ generates a reversible code with $\operatorname{rank}\left(G^{\prime \prime}\right)=n, \mathbf{v}_{k+1}$ cannot be a zero vector. Hence, at least one of the last k elements of \mathbf{v}_{k+1} is not zero. In other words, at least one of the first k elements of \mathbf{v}_{k+1}^{r} is not zero; say that the j th element of \mathbf{v}_{k+1}^{r} with $j \leq k$ is not zero. Then, $\mathbf{v}_{j} \cdot \mathbf{v}_{k+1}^{r} \neq 0$ whereas two vectors \mathbf{v}_{j} and \mathbf{v}_{k+1}^{r} are also codewords in \mathcal{C}; this contradicts the self-duality of \mathcal{C}. The result thus follows as desired.

4. Construction methods

In this section, we present some construction methods of reversible self-dual codes. We start with some basic construction methods.

Proposition 4.1.

(i) Let G be a generator matrix of a self-dual code of length n. Then

$$
\left(\begin{array}{c|c}
G & O \\
\hline O & G^{r}
\end{array}\right)
$$

generates a reversible self-dual code of length $2 n$.
(ii) (Direct sum of reversible codes) Let $(A \mid B)$ and $(C \mid D)$ be generator matrices of a reversible self-dual code of length $2 n$ and $2 m$, respectively, where A and B are $n \times n$ matrices, and C and D are $m \times m$ matrices. Then the direct sum of these two codes

$$
\left(\begin{array}{c|c}
A \mid B
\end{array}\right) \oplus_{R}(C \mid D):=\left(\begin{array}{c|c|c|c}
A & O & O & B \\
\hline O & C & D & O
\end{array}\right)
$$

generates a reversible self-dual code of length $2 n+2 m$.

The following proposition shows that every trivial reversible self-dual code of length $2 n+2$ is constructed from the trivial reversible self-dual code of length $2 n$.

Proposition 4.2. The trivial reversible self-dual code of length $2 n+2$ has the generator matrix:

$$
\left(I_{n+1} \mid R_{n+1}\right)=(1,1) \oplus_{R}\left(I_{n} \mid R_{n}\right)
$$

The following theorem is the main result, which shows a construction method for binary reversible self-dual codes.

Theorem 4.3. Let $\left(I_{n} \mid A\right)$ be a generator matrix of a binary reversible self-dual code of length $2 n$ and a column vector $\mathbf{x}=\left(x_{i}\right)$ be an eigenvector of A^{r} with odd weight, and let $E=\mathbf{x x}{ }^{F}$. Then

$$
G^{\prime}=\left(\begin{array}{c|c|c|c}
I_{n} & O & \mathbf{x} & A+E \\
\hline O & 1 & 0 & \mathbf{x}^{F}
\end{array}\right)
$$

generates a reversible self-dual code of length $2 n+2$.

Proof. Let

$$
A^{\prime}=\left(\begin{array}{c|c}
\mathbf{x} & A+E \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)
$$

Then clearly A^{\prime} is a persymmetric matrix. By Lemma 3.3, it is sufficient to show that G^{\prime} generates a self-dual code. Since G^{\prime} is in the standard form (1), we will show that A^{\prime} is orthogonal.

We note that $A A^{T}=I_{n}$ and $\mathbf{x}=\left(x_{i}\right)$ is an eigenvector of A^{r} with odd weight; this implies that

$$
\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T} \equiv 1 \quad(\bmod 2)
$$

and

$$
E\left(\mathbf{x}^{F}\right)^{T}=\left(\mathbf{x} \mathbf{x}^{F}\right)\left(\mathbf{x}^{F}\right)^{T}=\mathbf{x}\left(\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T}\right)=\mathbf{x}, A\left(\mathbf{x}^{F}\right)^{T}=A(R \mathbf{x})=(A R) \mathbf{x}=A^{r} \mathbf{x}=\mathbf{x}
$$

Thus,

$$
\begin{aligned}
A^{\prime}\left(A^{\prime}\right)^{T} & =\left(\begin{array}{c|c}
\mathbf{x} & A+E \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{x} & A+E \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)^{T} \\
& =\left(\begin{array}{c|c|c}
\mathbf{x} & A+E \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{x}^{T} & 0 \\
\hline A^{T}+E^{T} & \left(\mathbf{x}^{F}\right)^{T}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
\mathbf{x} \mathbf{x}^{T}+A A^{T}+A E^{T}+E A^{T}+E E^{T} & A\left(x^{F}\right)^{T}+E\left(\mathbf{x}^{F}\right)^{T} \\
\hline & \mathbf{x}^{F} A^{T}+\mathbf{x}^{F} E^{T} \\
\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
I_{n}+\left(A E^{T}+E A^{T}\right)+\left(\mathbf{x} \mathbf{x}^{T}+E E^{T}\right) & \mathbf{x}+\mathbf{x} \\
\hline
\end{array}\right)
\end{aligned}
$$

Clearly, $\mathbf{x x}^{T}$ is symmetric, and $A E^{T}$ is also symmetric since

$$
A E^{T}=A\left(\mathbf{x x}^{F}\right)^{T}=A\left(\mathbf{x}^{F}\right)^{T} \mathbf{x}^{T}=\mathbf{x} \mathbf{x}^{T}
$$

Thus

$$
A E^{T}+E A^{T}=A E^{T}+\left(A E^{T}\right)^{T}=2 A E^{T}=O
$$

and

$$
E E^{T}=\left(\mathbf{x x}^{F}\right)\left(\mathbf{x x}^{F}\right)^{T}=\mathbf{x}\left(\left(\mathbf{x}^{F}\right)\left(\mathbf{x}^{F}\right)^{T}\right) \mathbf{x}^{T}=\mathbf{x x}^{T}
$$

Therefore,

$$
\mathbf{x} \mathbf{x}^{T}+E E^{T}=2 \mathbf{x} \mathbf{x}^{T}=O
$$

Finally, we have

$$
\begin{aligned}
A^{\prime}\left(A^{\prime}\right)^{T} & =\left(\begin{array}{c|c}
I_{n}+O+O & 2 \mathbf{x} \\
\hline 2 \mathbf{x}^{T} & 1
\end{array}\right) \\
& =\left(\begin{array}{c|c}
I_{n} & \mathbf{0} \\
\hline \mathbf{0} & 1
\end{array}\right) \\
& =I_{n+1}
\end{aligned}
$$

hence G^{\prime} generates a self-dual code, and the result follows.
Remark 4.4. The construction method in Theorem 4.3 seems restrictive since the input vectors \mathbf{x} should be chosen to be eigenvectors. However, Theorem 4.7 shows that all non-trivial binary reversible self-dual codes can be constructed by using this method. We note that every eigenvector has the eigenvalue 1 in Theorem 4.3, Lemma 4.5, and Theorem 4.7.

For the proof of Theorem 4.7, we need Lemma 4.5 and Lemma 4.6 as the following.
Lemma 4.5. Let \mathcal{C} be a reversible self-dual code with generator matrix in the standard form:

$$
\left(\begin{array}{c|c|c|c}
I_{n} & O & \mathbf{x} & A \\
\hline O & 1 & 0 & \mathbf{x}^{F}
\end{array}\right) .
$$

Then \mathbf{x} is an eigenvector of $(A+E)^{r}$ with odd weight, where $E=\mathbf{x} \mathbf{x}^{F}$.
Proof. Since \mathcal{C} is self-dual, we have that

$$
\left(\begin{array}{c|c}
\mathbf{x} & A \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{x} & A \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)^{T}=\left(\begin{array}{c|c}
\mathbf{x} & A \\
\hline 0 & \mathbf{x}^{F}
\end{array}\right)\left(\begin{array}{c|c}
\mathbf{x}^{T} & 0 \\
\hline A^{T} & \left(\mathbf{x}^{F}\right)^{T}
\end{array}\right)=I_{n+1}
$$

This implies that $\mathbf{x} \mathbf{x}^{T}+A A^{T}=I_{n}, A\left(\mathbf{x}^{F}\right)^{T}=\mathbf{0}$ and $\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T}=1$.
The weight of \mathbf{x} is odd since

$$
w t(\mathbf{x})=w t\left(\mathbf{x}^{F}\right) \equiv \mathbf{x}^{F} \cdot \mathbf{x}^{F}=\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T}=1 \quad(\bmod 2)
$$

Furthermore, \mathbf{x} is an eigenvector of $\left(A+\mathbf{x x}^{F}\right)^{r}$ since

$$
\begin{aligned}
\left(A+\mathbf{x} \mathbf{x}^{F}\right)^{r} \mathbf{x} & =\left(A+\mathbf{x} \mathbf{x}^{F}\right) R \mathbf{x} \\
& =\left(A+\mathbf{x} \mathbf{x}^{F}\right)\left(\mathbf{x}^{F}\right)^{T} \\
& =A\left(\mathbf{x}^{F}\right)^{T}+\left(\mathbf{x} \mathbf{x}^{F}\right)\left(\mathbf{x}^{F}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& =0+\mathbf{x}\left(\mathbf{x}^{F}\left(\mathbf{x}^{F}\right)^{T}\right) \\
& =\mathbf{x} .
\end{aligned}
$$

Lemma 4.6. Let \mathcal{C} be a non-trivial reversible self-dual code. Then \mathcal{C} is R-equivalent to a reversible self-dual code with generator matrix

$$
\left(I_{n} \mid A\right)
$$

where $a_{n, 1}=0$ for $A=\left(a_{i, j}\right)$.
Proof. Let $\left(I_{n} \mid B\right)$ be a generator matrix of \mathcal{C}, where $B=\left(b_{i, j}\right)$. Then we consider the following two cases: there is a zero in the anti-diagonal entries of the matrix B or not.

Case 1. $b_{k, n-k+1}=0$ for some k.
By interchanging the k th row and the nth row of the generator matrix of $\mathcal{C} \sigma_{k, n}$, we get the generator matrix of the form

$$
\left(I_{n} \mid A\right)
$$

where $a_{n, 1}=0$, and then we are done.
Case 2. $b_{k, n-k+1}=1$ for all k.
Since \mathcal{C} is a non-trivial reversible self-dual code, B has a nonzero element except antidiagonal entries. Without loss of generality, we assume that the last row vector of B is $\left(1, \mathbf{x}^{F}\right)$, where the j th element of \mathbf{x} is nonzero, i.e.,

$$
G=\left(\begin{array}{c|c}
I_{n} & B
\end{array}\right)=\left(\begin{array}{c|c|c|c}
I_{n-1} & O & \mathbf{x} & B_{n-1} \\
\hline O & 1 & 1 & \mathbf{x}^{F}
\end{array}\right)
$$

where $b_{n, n-j+1}=1$. By adding the last row to every other i th row wherever $x_{i}=1$, we get the matrix

$$
G^{\prime}=\left(\begin{array}{c|c|c|c}
I_{n-1} & \mathbf{x} & O & B_{n-1}+E \\
\hline O & 1 & 1 & \mathbf{x}^{F}
\end{array}\right)
$$

where $E=\mathbf{x} \mathbf{x}^{F}$. We note that the i th anti-diagonal element of E is x_{i}^{2}; thus the j th anti-diagonal element of $B_{n-1}+E$ is $1+x_{j}^{2}=0$. Applying $\sigma_{n}=(n, n+1) \in S_{2 n}$ to G^{\prime}, the R-equivalent matrix of G^{\prime} is as follows:

$$
G^{\prime} \sigma_{n}=\left(\begin{array}{c|c|c|c}
I_{n-1} & O & \mathbf{x} & B_{n-1}+E \\
\hline O & 1 & 1 & \mathbf{x}^{F}
\end{array}\right)
$$

and letting

$$
B^{\prime}=\left(b_{i, j}^{\prime}\right)=\left(\begin{array}{c|c}
\mathbf{x} & B_{n-1}+E \\
\hline 1 & \mathbf{x}^{F}
\end{array}\right),
$$

we get the generator matrix in the standard form

$$
\left(I_{n} \mid B^{\prime}\right)
$$

where the j th anti-diagonal element $b_{j, n-j+1}=0$. Consequently, the result follows by the similar argument as the case 1 .

Theorem 4.7. Any non-trivial binary reversible self-dual code of length $2 n$ can be constructed from some binary reversible self-dual code of length $2 n-2$ by the construction method in Theorem 4.3.

Proof. Let \mathcal{C} be a non-trivial reversible self-dual code of length $2 n$ with generator matrix

$$
G=\left(I_{n} \mid A\right)
$$

where $A=\left(a_{i, j}\right)$ and persymmetric. By Lemma 4.6, we may assume that $a_{n, 1}=0$, i.e.,

$$
G=\left(\begin{array}{c|c|c|c}
I_{n-1} & O & \mathbf{x} & A^{\prime} \\
\hline O & 1 & 0 & \mathbf{x}^{F}
\end{array}\right)
$$

where A^{\prime} is a persymmetric matrix of degree $n-1$. By Lemma 4.5 the vector \mathbf{x}^{F} is an eigenvector of $\left(A^{\prime}+E\right)^{r}$ with odd weight, where $E=\mathbf{x x}^{F}$. Then

$$
G=\left(\begin{array}{c|c|c|c}
I_{n-1} & \mathbf{x} & \mathbf{x} & A^{\prime}+E \\
\hline O & 1 & 0 & \mathbf{x}^{F}
\end{array}\right),
$$

and clearly, $A^{\prime}+E$ is persymmetric, and the submatrix

$$
\left(I_{n-1}|\mathbf{x}| \mathbf{x} \mid A^{\prime}+E\right)
$$

generates a self-orthogonal code. By puncturing the two identical nth and $(n+1)$ th columns we obtain a standard generator matrix

$$
\left(I_{n-1} \mid A^{\prime}+E\right)
$$

of a reversible self-dual code of length $2 n-2$, and this proves the result.

5. New optimal binary self-dual codes

In this section, we present nine new optimal reversible self-dual codes of length 70; they are all new binary self-dual codes according to the data in [5,7,9,10,20].

Theorem 5.1. There are at least nine inequivalent optimal reversible self-dual [70, 35, 12] codes, which are computed by using our construction given in Theorem 4.3. They are all new with respect to binary self-dual codes. Moreover, their automorphism groups have the same order two.

It is known [17] that if a self-dual $[24 s+2 t, 12 s+t, d]$ code exists for $0 \leq t \leq 11$, then

$$
d \leq \begin{cases}4 s+4 & \text { if } t<11 \\ 4 s+6 & \text { if } t=11\end{cases}
$$

In fact, for the code length $n=70$, extremal codes should have minimum weight 14 from the bound above; however, their existence is not known yet. Consequently, all the $[70,35,12]$ binary self-dual codes we obtained have the largest minimum weight so far.

According to [9], all possible weight enumerators of binary self-dual [70, 35, 12] codes have the following forms:

$$
\begin{aligned}
& W_{70,1}=1+2 \beta y^{12}+(11730-2 \beta-128 \gamma) y^{14}+(150535-22 \beta+896 \gamma) y^{16}+\cdots \\
& W_{70,2}=1+2 \beta y^{12}+(9682-2 \beta) y^{14}+(173063-22 \beta) y^{16}+\cdots
\end{aligned}
$$

where β and γ are integer parameters.
All the generator matrices of nine inequivalent self-dual [70,35,12] codes we obtained are listed presented in the web [11] due to lack of space. They are all new self-dual codes based on $[5,7,9,10,20]$. Furthermore, all of them have the same automorphism group of order 2, and they have the weight enumerator form $W_{70,1}$ with the following parameters:

$$
\begin{aligned}
& \gamma=0, \beta=282,292,312,318,328 \\
& \gamma=2, \beta=328,332,344 \\
& \gamma=4, \beta=324 .
\end{aligned}
$$

Now, we show four of our computation results by writing the submatrix A of the standard form (1). These codes have the weight enumerator form $W_{70,1}$ with the parameters $\beta=332,282,324,312$ and $\gamma=2,0,4,0$, respectively.

01111100010010001010101001101100000 01011111011101111110101000110000000 10101111100011000111110101110000100 10110011001110100011001110001011000 11011000011000111101101000010111000 01111010110100111110101111010010001 00000010110101000001011101100001001 11000001101110101011001001110110110 11000001101010000111111110011000111 11000001101110110000100011011100101 11000001101110101100000101100101000 00000000110001101011000010101101100 00000010110010100010111000111111011 00000010110100111110001000101000100 11111000101111011011101001100110111 11000001101110100111100100111011100 00000010001010010011111100110101111 10011011100001110001010010100110110 00110100110001110000110110010110011 11110100101110011110110001000110010 00010111001001001101011111010111010 00101110110010101100100100001000110 10100010010111010011101011110001101 01011111010010010001110011011101010 11111101110000110011100011110011010 11100001111111001000011100001110011 0100101111100101110111111111100100 11110010111100100101000011110001110 11010101100111100110011000001101110 00000110001101111000000000000000111 01100000101101000100100000000110111 00010011001100111100100000000111011 00001001011011011000100000000101101 10001011111100010001100011110110011 01000011011010010101100011110011100)

01100001101000011110001001100001110 11011011110011011010010111111000001 00001110111100111001001001110001001 00101010111110010001010010001011101 11000001101110101111101011010011000 00011000110001010101110000100000000 10100111100110111001000010101001010 11011000011000111001001010110010110 11011000011100010101111101011100111 00011111001110110001100000100010111 00011111001110101101000110011011010 00011101001011111111100010100000010 00011111001000110110011000110010101 00011111001110101010101000100101010 01000000100010110101010101100110000 11011000011000110101100111111111100 11011000100110010100011100000010011 00100011101100011111101110100110001 00110000011001110100010110011010111 10110011011010101111101101111101111 00001010110011011001111111011010100 00101010011010101000000100000100010 11111100110001110010110111001011010 10011100101100000110010011101011100 01000101111101011101011111110011101 10100110001011111001000000110101110 00110000101110100110100000001111111 10110101001000010100011111001010011 11001100010001110100011011001001110 10100011011110000000011111001000100 00111010000111100011011111110101110 01001001100110011011011111110100010 00001101110011011100000000001001001 10010010001010000011100000110010011 01000111010110010011000000111010010)

01100001101000011110001001100001110 00011100100101001001010111000010011 10110011101000001101110111111111101 00101010111110010001010010001011101 10111011101100001000010101100111110 10100101100101100001001110101110100 11011101100100011110111100011101100 00011111001110101010001010001000100 00011111001010000110111101100110101 00011111001110110001100000100010111 10100010011010011001111000010101110 10100000011111001011011100101110110 10100010011100000010100110111100001 10100010011010011110010110101011110 11111101110110000001101011101000100 00011111001110100110100111000101110 00011111110000000111011100111000001 10011110111000101011010000101000101 00110000011001110100010110011010111 11001001011000001000010011001001001 10110111100111101101000001010100000 00101010011010101000000100000100010 00111011100111100001110111110001000 11100110101110100001101101011111010 01000101111101011101011111110011101 11011100001001011110111110000001000 00110000101110100110100000001111111 11001111001010110011100001111110101 00001011000111100111011011110011100 11011001011100100111100001111100010 10000111010011010111100001111011010 11110100110010101111100001111010110 10110000100111101000111110000111101 01010101011100010000100000001000001 00111101010100110100111110001110100)

10010011111111111100011010001000100 10010001001101010100111011010100110 10010111001010100011011010011001111 11001100110111110100111110011100100 01111001101000111011010100010000000 01100111100001010010001111011001010 01100000011111010010000010010101101 11111001111011100011000110011111110 00011111100101111110111101100000000 00011111100001001001100000100100010 00011111100001010101000110011101111 11111011111110110110101110110111000 11111001111101111111010100100101111 00011111100001010010101000100011111 00101011010000011001110101100001010 11111001111011101111101011010010100 00011111011111111111011100111110100 01001000011110110011001110100001011 00100100101000001011101001100010001 11101101111010100110111110101111011 11111000011000010111001100110011101 01010101110110000011011011111101011 10100010101101010111000100011001101 01001111110111000110001100101001011 10110111101010111111001100011010111 11101100110101110111101100011001001 00100100011111011001011111110111001 0111001000110101001111111110110111 11101101001110000010110111100100101 10000010111101011010010011100101100 0011101001010011011111111110011000 01001001001001100011011111110010111 11101011111010111001101100011110000 10110011010101110101001100011111000 01100110011010110001001100010001111

Acknowledgment

We thank an anonymous referee for his/her helpful comments, which improved the clarity of this paper.

References

[1] S. Buyuklieva, On the binary self-dual codes with an automorphism of order 2, Des. Codes Cryptogr. 12 (1) (1997) 39-48.
[2] S. Buyuklieva, I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inf. Theory 44 (1) (1998) 323-328.
[3] J. Cannon, C. Playoust, An Introduction to Magma, University of Sydney, Sydney, Australia, 1994.
[4] C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, in: Coding Theory and Applications, Springer, Cham, 2015, pp. 97-105.
[5] R. Dontcheva, New binary [70, 35, 12] self-dual and binary [72, 36, 12] self-dual doubly-even codes, Serdica Math. J. 27 (4) (2001) 287-302.
[6] P. Gaborit, O.D. King, Linear constructions for DNA codes, Theor. Comput. Sci. 334 (1) (2005) 99-113.
[7] T.A. Gulliver, M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr. 13 (3) (1998) 257-269.
[8] F. Gursoy, E.S. Oztas, I. Siap, Reversible DNA codes using skew polynomial rings, Appl. Algebra Eng. Commun. Comput. 28 (2017) 311-320.
[9] M. Harada, The existence of a self-dual [70, 35, 12] code and formally self-dual codes, Finite Fields Appl. 3 (1997) 131-139.
[10] H.J. Kim, Y. Lee, Extremal quasi-cyclic self-dual codes over finite fields, Finite Fields Appl. 52 (2018) 301-318.
[11] Y. Lee, http://math.ewha.ac.kr/~yoonjinl/RSDC.pdf, 2018.
[12] J. Liang, L. Wang, On cyclic DNA codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, J. Appl. Math. Comput. 51 (2016) 81-91.
[13] J.L. Massey, Reversible codes, Inf. Control 7 (1964) 369-380.
[14] J.L. Massey, Linear codes with complementary duals, Discrete Math. 106 (1992) 337-342.
[15] S.K. Muttoo, S. Lal, A reversible code over $G F(q)$, Kybernetika 22 (1986) 85-91.
[16] X.T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm, Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses, in: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), IEEE, 2015, pp. 82-87.
[17] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory 44 (1998) 134-139.
[18] Y. Takishima, M. Wada, H. Murakami, Reversible variable length codes, IEEE Trans. Commun. 43 (1995) 158-162.
[19] X. Yang, J.L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994) 391-393.
[20] N. Yankov, M.-H. Lee, M. Gürel, M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inf. Theory 61 (3) (2015) 1188-1193.

[^0]: * Corresponding author at: Department of Mathematics, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, 24341, Republic of Korea.

 E-mail addresses: guswls41@yonsei.ac.kr (H.J. Kim), whchoi@kangwon.ac.kr (W.-H. Choi), yoonjinl@ewha.ac.kr (Y. Lee).

 1 The author is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1D1A1B03028251).

 2 The author is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2018R1A6A3A01013052) and also by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2019R1I1A1A01057755).
 3 The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574).

