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codes; they all have the same parameter [70, 35, 12] and their 
automorphism groups have the same order two.
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1. Introduction

Reversible codes were introduced by Massey [13], and it is known that they have 
some good properties in certain data storage and retrieval systems. Furthermore, some 
reversible codes have a good capability of correcting solid burst errors, and they have high 
transmission efficiency [15,18]. Recently, it is noted that reversible codes are very useful in 
applied mathematics such as cryptography [4,16] and bio-mathematics, especially DNA 
coding theory [8,12]; this is due to the fact that a DNA code was constructed by using 
reversible codewords of a linear code [6].

It is interesting to note that a class of reversible codes is closely connected to BCH 
codes and LCD codes. In fact, a class of reversible codes is an important subclass of 
BCH codes. In 1992, Massey introduced another class of codes, linear complementary 
dual codes (LCD codes for short) [14]; an LCD code is defined to be a linear code C
whose dual code C⊥ satisfies C ∩C⊥ = {0}. Massey and Yang proved that a cyclic code 
is an LCD code if and only if it is a reversible code [19]. Noting that a self-dual code C is 
defined to satisfy C = C⊥, LCD codes and self-dual codes have an extreme contrast in 
terms of the intersection of C and its dual C⊥. Moreover, a self-dual code is one of the 
major subjects in coding theory due to its variety of nice properties as codes. However, 
there has been no investigation on the self-duality of reversible codes yet as far as we 
know.

We study a construction method of binary reversible self-dual codes in this paper. 
We first characterize binary reversible self-dual codes. Using these characteristics of 
reversible self-dual codes, we find an explicit method for constructing all the binary 
reversible self-dual codes up to equivalence. We also introduce a notion of R-equivalence
for reversible codes; this notion is distinguished from a usual notion of equivalence of 
codes. We show that a reversible self-dual code has a generator matrix in the standard 
form under the R-equivalence. We find an explicit method for constructing all the binary 
reversible self-dual codes up to R-equivalence. Furthermore, using this construction, we 
obtain nine optimal reversible self-dual codes of length 70 which are all inequivalent, and 
these codes are all new with respect to binary self-dual codes; they all have the same 
parameter [70, 35, 12] and their automorphism groups have the same order two.

We discuss the comparison of our result with the result of Buyuklieva et al. [1,2]. In 
fact, reversible self-dual codes can be regarded as self-dual codes with an automorphism 
of order two without fixed points. Buyuklieva et al. obtained some interesting results on 
this class of codes [1,2]. However, we point out that there is some significant difference 
between their result and ours. First of all, we construct reversible self-dual codes of 
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length 2n +2 from reversible self-dual codes of length 2n taking it into consideration the 
equivalence relation between them. This is a successive construction in the sense that for 
finding all reversible self-dual codes of all even lengths, we can keep using this method 
by successively increasing lengths by two. On the other hand, Buyuklieva et al. focus on 
finding extremal self-dual codes of length 2n from self-orthogonal codes of length n in 
[1,2]; their construction is a non-successive one in the following sense. In their method, 
for construction of all extremal self-dual codes of length 2n one should search for all 
self-orthogonal codes of length n, and in order to find all extremal self-dual codes of 
length 2n + 2 one need all self-orthogonal codes of length n + 1, and so forth; that is, 
each step has to be restarted. Furthermore, their construction is also involved with a 
heuristic algorithm, while our method is an explicit and deterministic one. Lastly, in our 
construction, it was a crucial issue to preserve the reversible form of self-dual codes due 
to their applications to DNA codes, while in their work, it was not necessary.

Our paper is organized as follows. We introduce some basic notions and definitions 
in Section 2. We then study various properties of reversible self-dual codes and define 
a notion of R-equivalence of reversible codes in Section 3; we prove some lemmas which 
are necessary for the proof of our main results in Section 4. Section 4 presents our main 
results, where we find a construction method of binary reversible self-dual codes, and we 
also show that every binary reversible self-dual code can be obtained by this method. In 
Section 5, we obtain nine new optimal reversible binary self-dual codes with parameter 
[70, 35, 12] are presented. All computations are done using MAGMA [3].

2. Preliminaries

A binary linear code of length n is a subspace of Fn
2 . An element of code is called a 

codeword. The space Fn
2 is equipped with the standard inner product, x ·y =

∑n
i=1 xiyi, 

where x = (xi), y = (yi) are vectors in Fn
2 . Let C be a code of length n over F2. Then 

the dual code C⊥ is defined by

C⊥ = {v ∈ Fn
2 | v ·w = 0 for all w ∈ C}.

C is called self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.
Two codes C and C′ are called permutation equivalent and denoted by C � C′ if 

one can be obtained from the other by a permutation of coordinates. A permutation 
σ ∈ Sn is called an automorphism of C if C = Cσ, where Cσ = {cσ | c ∈ C}. The set 
of all automorphisms of C forms the automorphism group Aut(C) of C. A code is called 
reversible if it is invariant as a set under a reversal of each codeword. In particular, a 
code C of length 2n for an integer n, C is reversible if C = Cτ for τ = (1, 2n)(2, 2n −
1) · · · (k, 2n − k + 1) · · · (n, n + 1) ∈ S2n. A self-dual code which is reversible is called a 
reversible self-dual code. Since any self-dual code has an even length 2n for an integer n, 
it is obvious that a self-dual code C is reversible self-dual if and only if τ ∈ Aut(C).
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Let A be a matrix of size m × n denoted by (aij)m×n. Then AT is the transpose 
of A, i.e., AT = (aji)n×m, AF is the flip-transpose of A, which flips A across its anti-
diagonal, i.e., AF = (an−j+1,m−i+1)n×m and Ar is the column reversed matrix of A, i.e., 
Ar = (ai,n−j+1)m×n. These notations are also used on vectors regarding a vector v ∈ Fn

2
as a 1 × n matrix over F2. Let In be the identity matrix and A be a square matrix of 
order n. Then a matrix A is called orthogonal if AAT = In, A is called symmetric if 
A = AT , and A is called persymmetric if A = AF .

Let A and B be n × n matrices and Rn be the n × n anti-diagonal matrix whose 
anti-diagonal elements are all 1, i.e., Rn = Irn. Then the following properties are straight-
forward:

RT
n = RF

n = Rn, R
2
n = In, A

F = RnA
TRn, A

r = ARn,

(AF )F = A, (AT )F = (AF )T , (A + B)F = AF + BF , (AB)F = BFAF .

We use the following notations throughout this paper.

Notations
C a binary linear code
Aut(C) the automorphism group of C
Sn the symmetric group of degree n

τ the permutation (1, 2n)(2, 2n− 1) · · · (n, n + 1) ∈ S2n
σi a permutation (i, 2n− i + 1) ∈ S2n
σi,j a permutation (i, j)(2n− i + 1, 2n− j + 1) ∈ S2n
In the identity matrix of degree n

Rn the column reversed matrix of In
AT the transpose of a matrix A

AF the flip-transpose of a matrix A

Ar the column reversed matrix of a matrix A

3. Some properties of reversible self-dual codes and their R-equivalence

In this section, we discuss some properties of reversible self-dual codes and introduce 
a notion of R-equivalence for reversible self-dual codes. We prove some lemmas which 
are necessary for the proof of our main results in Section 4.

A generator matrix of C is a matrix whose rows form a basis of C. It is well-known 
that a self-dual code of length 2n over a field has a standard generator matrix, up to 
equivalence, in the following form: (

In A
)
, (1)

where A is an n × n orthogonal matrix.

Lemma 3.1. A dual code of a reversible code is also reversible.
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Proof. Let C be a reversible code. For any u ∈ C⊥, we have that u · x = 0 for all x ∈ C. 
This implies ur · xr = 0 for all x ∈ C. Since C is reversible, ur · x = 0 for all x ∈ C. 
Therefore, ur ∈ C⊥. �
Lemma 3.2. Let A be an n × n binary matrix. Then any two of the following statements 
imply the third.

(i) A is orthogonal.
(ii) (Ar)2 = In.
(iii) A is persymmetric.

Proof. Assume that A is orthogonal. We then have that A−1 = AT and R−1
n = Rn. 

Then

(Ar)2 = In ⇔ (ARn)−1 = ARn

⇔ RnA
−1 = ARn

⇔ Rn(AT ) = ARn

⇔ RnA
TRn = A

⇔ AF = A.

Now we show that (ii) and (iii) imply (i).
Assume that (ii) and (iii) hold. Then A = AF = RnA

TRn and

(Ar)2 = In ⇒ (ARn)−1 = ARn

⇒ RnA
−1 = (RnA

TRn)Rn

⇒ RnA
−1 = RnA

T

⇒ A−1 = AT

⇒ AAT = In;

thus A is orthogonal and this completes the proof. �
Lemma 3.3. Let C be a self-dual code of length 2n with generator matrix in the standard 
form (In | A). Then C is reversible if and only if the matrix A satisfies one of the 
followings:

(i) (Ar)2 = In
(ii) A is persymmetric.

Proof. Suppose that a self-dual code C is reversible. Then the reversed generator matrix 
G of C with
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G =
(
Ar Rn

)
generates C as well. Recall that A is orthogonal since C is self-dual; therefore, A is non-
singular and so is Ar. Thus, (Ar)−1G is a generator matrix of C in the standard form 
since

(Ar)−1G =
(

(Ar)−1Ar (Ar)−1Rn

)
=

(
In (Ar)−1Rn

)
.

We note that the row vectors of (Ar)−1G and those of (In | A) generate the same 
code C; this implies

(Ar)−1Rn = A.

Thus, we have

(Ar)−1Rn = A ⇔ (ARn)−1 = ARn ⇔ (Ar)2 = In,

and hence (i) holds. By the previous lemma, (ii) also follows. The other direction follows 
immediately in a similar way. �

A code with generator matrix (In | Rn) is also a reversible self-dual code of length 2n; 
we call this code the trivial reversible self-dual code. Using these trivial codes, we obtain 
the following corollary.

Corollary 3.4. There exist binary reversible self-dual codes for all even lengths.

Corollary 3.5. Let Jn = (1)n×n be an n × n matrix over F2 consisting of all 1 entries. 
Then a code with generator matrix (In | In +Jn) is a reversible self-dual code if and only 
if n is even.

Proof. We note that (Jn + In)(Jn + In)T = JnJ
T
n + In and JnJ

T
n + In is equal to In if 

and only if n is even. Thus, C is self-dual if and only if n is even. Clearly, Jn + In is a 
persymmetric matrix for all n. By Lemma 3.3, C is a reversible self-dual code if and only 
if n is even. �

The following example shows that the class of reversible self-dual codes may contain 
some optimal codes. The extended Hamming [8,4,4] code and extremal self-dual codes 
of lengths 24 and 48 are also reversible self-dual codes up to equivalence, which can be 
shown by using Lemma 3.3.

Example 3.6. The extended Hamming [8,4,4] code is a binary reversible self-dual code of 
length 8. The generator matrix of extended Hamming [8,4] code is



H.J. Kim et al. / Finite Fields and Their Applications 67 (2020) 101714 7
(
I4 A

)
=

⎛⎜⎝1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞⎟⎠
and we can check that the matrix A is orthogonal and persymmetric.

The extremal [24,12,8] extended Golay code is a reversible self-dual code with gener-
ator matrix (In | A), where A is given as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 0 1 1
0 1 1 1 1 1 0 0 1 0 0 1
0 1 1 1 0 0 1 0 0 1 1 1
1 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 0 0 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 0 0
1 0 0 1 0 0 1 1 1 1 1 0
0 1 0 1 1 1 1 1 0 0 1 0
1 0 1 0 0 1 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The extremal [48,24,12] extended quadratic residue code is also a reversible self-dual 

code with generator matrix (In | A), where A is given as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0
1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1
0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0
0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0
0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0
1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1
0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1
0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1
1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0
1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1
1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1
0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1
0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1
1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0
0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
From now on, we discuss the equivalence of reversible codes. Equivalence of reversible 

codes is to be distinguished from a usual notion of equivalence of codes. The main reason 
why they should be distinguished is that a code which is equivalent to a reversible code 
may not be reversible any more. For example, we consider two codes C and C′ generated 
by the matrices G and G′, respectively:
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G =
(1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 0 0 1

)
and G′ =

(1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 1

)
.

Clearly, the codes C and C′ are equivalent to each other. However, the code C is a trivial 
reversible self-dual code, but the code C′ is not reversible. We thus need to define a 
notion of equivalence which preserves reversibility of codes. Now we define a notion of 
R-equivalence of reversible codes as follows.

Definition 3.7. Let σi = (i, 2n − i +1) and σi,j = (i, j)(2n − i +1, 2n − j +1) be elements 
of the symmetric group S2n for 1 ≤ i, j ≤ n. Let C be a reversible code of length 2n. 
Then any composition of these permutations acting on C preserves the reversibility. If 
two reversible codes C and C′ are equivalent under permutations σi’s and σi,j ’s, then 
they are called R-equivalent and denoted by C �R C′.

In order to preserve the reversibility of code, we define elementary row operations
(R1), (R2), and reversible column permutations (RC1), (RC2) on its generator matrix 
as follows.

(R1) Permutation of the rows.
(R2) Addition of a row to another.
(RC1) Permutation of the ith and the (2n − i + 1)th columns for 1 ≤ i ≤ n.
(RC2) Permutation of the ith and the jth columns and the (2n − i + 1)th and the 

(2n − j + 1)th columns simultaneously for 1 ≤ i, j ≤ n.
We note that two codes are R-equivalent if and only if their generator matrices can be 

transformed from one to the other by elementary row operations and reversible column 
permutations (RC1) and (RC2).

Remark 3.8. In general, any linear code has a generator matrix in the standard form in 
(1) up to equivalence. However, it is not guaranteed that a reversible code has a generator 
matrix in the standard form in (1) up to R-equivalence. For example, the matrix

G =
(1 1 0 0 1 1

0 0 1 0 0 0
0 0 0 1 0 0

)

generates a reversible code; but there is no way to transform G to the standard form 
up to R-equivalence. We note that this code is not self-dual. The following Lemma 3.9
shows that if a reversible code is self-dual, then it always has a generator matrix in the 
standard form up to R-equivalence. We will use this lemma for the proof of our main 
Theorem 4.7.

Lemma 3.9. Every reversible self-dual code of length 2n is R-equivalent to a reversible 
self-dual code which has a generator matrix in the standard form
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(
In A

)
,

where A is an orthogonal and persymmetric matrix.

Proof. Let G = (M | N) be a generator matrix of a reversible self-dual code C of 
length 2n, where M and N are n × n matrices. It is enough to show that by applying 
elementary row operations and reversible column permutations (RC1) and (RC2), G can 
be transformed to a matrix

G′ =
(
M ′ N ′

)
with rank(M ′) = n.

Let

S = {G̃ | G̃ = (M̃ | Ñ) �R G}

be a set of n × 2n matrices which are R-equivalent to G, where M̃ and Ñ are n × n

matrices. We take G′ = (M ′ | N ′) ∈ S such that rank(M ′) ≥ rank(M̃) for all G̃ ∈ S . If 
rank(M ′) = n, then we are done. If rank(M ′) = k < n, then we will find a contradiction.

Now, assume that rank(M ′) = k < n. Applying the operations (R1), (R2) and (RC2), 
G′ is transformed to a reduced echelon form:

G′′ =
(
Ik Ak×(n−k) Bk×(n−k) Ck×k

O O D(n−k)×(n−k) E(n−k)×k

)
.

The submatrix D must be a zero matrix; if D has a column which has a nonzero 
element, then applying the operation (RC1) to the column leads to a contradiction to 
the maximality of rank(M ′). Thus we have

G′′ =
(
Ik Ak×(n−k) Bk×(n−k) Ck×k

O O O E(n−k)×k

)
.

Let vi be the ith row vector of G′′. Since G′′ generates a reversible code with 
rank(G′′) = n, vk+1 cannot be a zero vector. Hence, at least one of the last k ele-
ments of vk+1 is not zero. In other words, at least one of the first k elements of vr

k+1 is 
not zero; say that the jth element of vr

k+1 with j ≤ k is not zero. Then, vj · vr
k+1 
= 0

whereas two vectors vj and vr
k+1 are also codewords in C; this contradicts the self-duality 

of C. The result thus follows as desired. �
4. Construction methods

In this section, we present some construction methods of reversible self-dual codes. 
We start with some basic construction methods.
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Proposition 4.1.

(i) Let G be a generator matrix of a self-dual code of length n. Then

(
G O

O Gr

)

generates a reversible self-dual code of length 2n.
(ii) (Direct sum of reversible codes) Let (A | B) and (C | D) be generator matrices of 

a reversible self-dual code of length 2n and 2m, respectively, where A and B are 
n × n matrices, and C and D are m ×m matrices. Then the direct sum of these 
two codes

(
A B

)
⊕R

(
C D

)
:=

(
A O O B

O C D O

)

generates a reversible self-dual code of length 2n + 2m.

The following proposition shows that every trivial reversible self-dual code of length 
2n + 2 is constructed from the trivial reversible self-dual code of length 2n.

Proposition 4.2. The trivial reversible self-dual code of length 2n + 2 has the generator 
matrix:

(In+1 | Rn+1) = (1, 1) ⊕R (In | Rn)

The following theorem is the main result, which shows a construction method for 
binary reversible self-dual codes.

Theorem 4.3. Let (In | A) be a generator matrix of a binary reversible self-dual code of 
length 2n and a column vector x = (xi) be an eigenvector of Ar with odd weight, and let 
E = xxF . Then

G′ =
(
In O x A + E

O 1 0 xF

)

generates a reversible self-dual code of length 2n + 2.

Proof. Let

A′ =
(

x A + E

0 xF

)
.
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Then clearly A′ is a persymmetric matrix. By Lemma 3.3, it is sufficient to show that 
G′ generates a self-dual code. Since G′ is in the standard form (1), we will show that A′

is orthogonal.
We note that AAT = In and x = (xi) is an eigenvector of Ar with odd weight; this 

implies that

xF (xF )T ≡ 1 (mod 2)

and

E(xF )T = (xxF )(xF )T = x(xF (xF )T ) = x, A(xF )T = A(Rx) = (AR)x = Arx = x.

Thus,

A′(A′)T =
(

x A + E

0 xF

)(
x A + E

0 xF

)T

=
(

x A + E

0 xF

)(
xT 0

AT + ET (xF )T

)

=
(

xxT + AAT + AET + EAT + EET A(xF )T + E(xF )T

xFAT + xFET xF (xF )T

)

=
(
In + (AET + EAT ) + (xxT + EET ) x + x

xT + xT 1

)
.

Clearly, xxT is symmetric, and AET is also symmetric since

AET = A(xxF )T = A(xF )TxT = xxT .

Thus

AET + EAT = AET + (AET )T = 2AET = O,

and

EET = (xxF )(xxF )T = x((xF )(xF )T )xT = xxT .

Therefore,

xxT + EET = 2xxT = O.
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Finally, we have

A′(A′)T =
(
In + O + O 2x

2xT 1

)

=
(
In 0
0 1

)
= In+1;

hence G′ generates a self-dual code, and the result follows. �
Remark 4.4. The construction method in Theorem 4.3 seems restrictive since the input 
vectors x should be chosen to be eigenvectors. However, Theorem 4.7 shows that all 
non-trivial binary reversible self-dual codes can be constructed by using this method. 
We note that every eigenvector has the eigenvalue 1 in Theorem 4.3, Lemma 4.5, and 
Theorem 4.7.

For the proof of Theorem 4.7, we need Lemma 4.5 and Lemma 4.6 as the following.

Lemma 4.5. Let C be a reversible self-dual code with generator matrix in the standard 
form: (

In O x A

O 1 0 xF

)
.

Then x is an eigenvector of (A + E)r with odd weight, where E = xxF .

Proof. Since C is self-dual, we have that(
x A

0 xF

)(
x A

0 xF

)T

=
(

x A

0 xF

)(
xT 0
AT (xF )T

)
= In+1.

This implies that xxT + AAT = In, A(xF )T = 0 and xF (xF )T = 1.
The weight of x is odd since

wt(x) = wt(xF ) ≡ xF · xF = xF (xF )T = 1 (mod 2).

Furthermore, x is an eigenvector of (A + xxF )r since

(A + xxF )rx = (A + xxF )Rx

= (A + xxF )(xF )T

= A(xF )T + (xxF )(xF )T
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= 0 + x(xF (xF )T )

= x. �
Lemma 4.6. Let C be a non-trivial reversible self-dual code. Then C is R-equivalent to a 
reversible self-dual code with generator matrix(

In A
)
,

where an,1 = 0 for A = (ai,j).

Proof. Let (In | B) be a generator matrix of C, where B = (bi,j). Then we consider the 
following two cases: there is a zero in the anti-diagonal entries of the matrix B or not.

Case 1. bk,n−k+1 = 0 for some k.
By interchanging the kth row and the nth row of the generator matrix of Cσk,n, we 

get the generator matrix of the form (
In A

)
,

where an,1 = 0, and then we are done.
Case 2. bk,n−k+1 = 1 for all k.
Since C is a non-trivial reversible self-dual code, B has a nonzero element except anti-

diagonal entries. Without loss of generality, we assume that the last row vector of B is 
(1, xF ), where the jth element of x is nonzero, i.e.,

G =
(
In B

)
=

(
In−1 O x Bn−1

O 1 1 xF

)
,

where bn,n−j+1 = 1. By adding the last row to every other ith row wherever xi = 1, we 
get the matrix

G′ =
(
In−1 x O Bn−1 + E

O 1 1 xF

)
,

where E = xxF . We note that the ith anti-diagonal element of E is x2
i ; thus the jth 

anti-diagonal element of Bn−1 + E is 1 + x2
j = 0. Applying σn = (n, n + 1) ∈ S2n to G′, 

the R-equivalent matrix of G′ is as follows:

G′σn =
(
In−1 O x Bn−1 + E

O 1 1 xF

)

and letting
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B′ = (b′i,j) =
(

x Bn−1 + E

1 xF

)
,

we get the generator matrix in the standard form

(
In B′

)
,

where the jth anti-diagonal element bj,n−j+1 = 0. Consequently, the result follows by 
the similar argument as the case 1. �
Theorem 4.7. Any non-trivial binary reversible self-dual code of length 2n can be con-
structed from some binary reversible self-dual code of length 2n − 2 by the construction 
method in Theorem 4.3.

Proof. Let C be a non-trivial reversible self-dual code of length 2n with generator matrix

G =
(
In A

)
where A = (ai,j) and persymmetric. By Lemma 4.6, we may assume that an,1 = 0, i.e.,

G =
(
In−1 O x A′

O 1 0 xF

)
,

where A′ is a persymmetric matrix of degree n − 1. By Lemma 4.5 the vector xF is an 
eigenvector of (A′ + E)r with odd weight, where E = xxF . Then

G =
(
In−1 x x A′ + E

O 1 0 xF

)
,

and clearly, A′ + E is persymmetric, and the submatrix

(
In−1 x x A′ + E

)
generates a self-orthogonal code. By puncturing the two identical nth and (n + 1)th 
columns we obtain a standard generator matrix

(
In−1 A′ + E

)
of a reversible self-dual code of length 2n − 2, and this proves the result. �
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5. New optimal binary self-dual codes

In this section, we present nine new optimal reversible self-dual codes of length 70; 
they are all new binary self-dual codes according to the data in [5,7,9,10,20].

Theorem 5.1. There are at least nine inequivalent optimal reversible self-dual [70, 35, 12]
codes, which are computed by using our construction given in Theorem 4.3. They are all 
new with respect to binary self-dual codes. Moreover, their automorphism groups have 
the same order two.

It is known [17] that if a self-dual [24s +2t, 12s + t, d] code exists for 0 ≤ t ≤ 11, then

d ≤
{

4s + 4 if t < 11,
4s + 6 if t = 11.

In fact, for the code length n = 70, extremal codes should have minimum weight 
14 from the bound above; however, their existence is not known yet. Consequently, all 
the [70, 35, 12] binary self-dual codes we obtained have the largest minimum weight so 
far.

According to [9], all possible weight enumerators of binary self-dual [70, 35, 12] codes 
have the following forms:

W70,1 = 1 + 2βy12 + (11730 − 2β − 128γ)y14 + (150535 − 22β + 896γ)y16 + · · · ,
W70,2 = 1 + 2βy12 + (9682 − 2β)y14 + (173063 − 22β)y16 + · · · ,

where β and γ are integer parameters.
All the generator matrices of nine inequivalent self-dual [70, 35, 12] codes we obtained 

are listed presented in the web [11] due to lack of space. They are all new self-dual codes 
based on [5,7,9,10,20]. Furthermore, all of them have the same automorphism group of 
order 2, and they have the weight enumerator form W70,1 with the following parameters:

γ = 0, β = 282, 292, 312, 318, 328;

γ = 2, β = 328, 332, 344;

γ = 4, β = 324.

Now, we show four of our computation results by writing the submatrix A of the stan-
dard form (1). These codes have the weight enumerator form W70,1 with the parameters 
β = 332, 282, 324, 312 and γ = 2, 0, 4, 0, respectively.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01111100010010001010101001101100000
01011111011101111110101000110000000
10101111100011000111110101110000100
10110011001110100011001110001011000
11011000011000111101101000010111000
01111010110100111110101111010010001
00000010110101000001011101100001001
11000001101110101011001001110110110
11000001101010000111111110011000111
11000001101110110000100011011100101
11000001101110101100000101100101000
00000000110001101011000010101101100
00000010110010100010111000111111011
00000010110100111110001000101000100
11111000101111011011101001100110111
11000001101110100111100100111011100
00000010001010010011111100110101111
10011011100001110001010010100110110
00110100110001110000110110010110011
11110100101110011110110001000110010
00010111001001001101011111010111010
00101110110010101100100100001000110
10100010010111010011101011110001101
01011111010010010001110011011101010
11111101110000110011100011110011010
11100001111111001000011100001110011
01001011111001011101111111111100100
11110010111100100101000011110001110
11010101100111100110011000001101110
00000110001101111000000000000000111
01100000101101000100100000000110111
00010011001100111100100000000111011
00001001011011011000100000000101101
10001011111100010001100011110110011
01000011011010010101100011110011100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01100001101000011110001001100001110
11011011110011011010010111111000001
00001110111100111001001001110001001
00101010111110010001010010001011101
11000001101110101111101011010011000
00011000110001010101110000100000000
10100111100110111001000010101001010
11011000011000111001001010110010110
11011000011100010101111101011100111
00011111001110110001100000100010111
00011111001110101101000110011011010
00011101001011111111100010100000010
00011111001000110110011000110010101
00011111001110101010101000100101010
01000000100010110101010101100110000
11011000011000110101100111111111100
11011000100110010100011100000010011
00100011101100011111101110100110001
00110000011001110100010110011010111
10110011011010101111101101111101111
00001010110011011001111111011010100
00101010011010101000000100000100010
11111100110001110010110111001011010
10011100101100000110010011101011100
01000101111101011101011111110011101
10100110001011111001000000110101110
00110000101110100110100000001111111
10110101001000010100011111001010011
11001100010001110100011011001001110
10100011011110000000011111001000100
00111010000111100011011111110101110
01001001100110011011011111110100010
00001101110011011100000000001001001
10010010001010000011100000110010011
01000111010110010011000000111010010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01100001101000011110001001100001110
00011100100101001001010111000010011
10110011101000001101110111111111101
00101010111110010001010010001011101
10111011101100001000010101100111110
10100101100101100001001110101110100
11011101100100011110111100011101100
00011111001110101010001010001000100
00011111001010000110111101100110101
00011111001110110001100000100010111
10100010011010011001111000010101110
10100000011111001011011100101110110
10100010011100000010100110111100001
10100010011010011110010110101011110
11111101110110000001101011101000100
00011111001110100110100111000101110
00011111110000000111011100111000001
10011110111000101011010000101000101
00110000011001110100010110011010111
11001001011000001000010011001001001
10110111100111101101000001010100000
00101010011010101000000100000100010
00111011100111100001110111110001000
11100110101110100001101101011111010
01000101111101011101011111110011101
11011100001001011110111110000001000
00110000101110100110100000001111111
11001111001010110011100001111110101
00001011000111100111011011110011100
11011001011100100111100001111100010
10000111010011010111100001111011010
11110100110010101111100001111010110
10110000100111101000111110000111101
01010101011100010000100000001000001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10010011111111111100011010001000100
10010001001101010100111011010100110
10010111001010100011011010011001111
11001100110111110100111110011100100
01111001101000111011010100010000000
01100111100001010010001111011001010
01100000011111010010000010010101101
11111001111011100011000110011111110
00011111100101111110111101100000000
00011111100001001001100000100100010
00011111100001010101000110011101111
11111011111110110110101110110111000
11111001111101111111010100100101111
00011111100001010010101000100011111
00101011010000011001110101100001010
11111001111011101111101011010010100
00011111011111111111011100111110100
01001000011110110011001110100001011
00100100101000001011101001100010001
11101101111010100110111110101111011
11111000011000010111001100110011101
01010101110110000011011011111101011
10100010101101010111000100011001101
01001111110111000110001100101001011
10110111101010111111001100011010111
11101100110101110111101100011001001
00100100011111011001011111110111001
01110010001101010011111111110110111
11101101001110000010110111100100101
10000010111101011010010011100101100
00111010010100110111111111110011000
01001001001001100011011111110010111
11101011111010111001101100011110000
10110011010101110101001100011111000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

00111101010100110100111110001110100 01100110011010110001001100010001111
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