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1 Introduction

This Supplement illustrates the analysis of econometric models formed by directionally differentiable (D-D)

quasi-likelihood functions and provides technical details which are not included in Cho and White (2017).

All theorems, assumptions, and corollaries are those in Cho and White (2017) unless otherwise stated.

2 Examples

In this section, we illustrate the analysis of D-D econometric models using the stochastic frontier production

function in Aigner, Lovell, and Schmidt (1977) and Stevenson (1980); Box and Cox’s (1964) transformation;

and the standard generalized methods of moments (GMM) estimation in Hansen (1982).

2.1 Example 1: Stochastic Frontier Production Function Models

A D-D quasi-likelihood function is found from the theory of stochastic frontier production function models.

Stochastic production function models are often specified for identically and independently distributed (IID)

observations {Yt,Xt} as

Yt = X′tβ∗ + Ut,

where Yt ∈ R is the output produced by inputs Xt ∈ Rk such that β∗ is an interior element of B ⊂ Rk,

E[U2
t ] < ∞, E[X2

t,j ] < ∞ for j = 1, 2, . . . , k, and E[XtX
′
t] is positive definite. Here, Ut stands for an

error which is independent of Xt. This model was first introduced by Aigner, Lovell, and Schmidt (1977).

One of the early uses of this specification is in identifying inefficiently produced outputs. Given output

levels subject to the production function and inputs, outputs are inefficiently produced if E[Ut] < 0. Aigner,

Lovell, and Schmidt (1977) captured this inefficiency by decomposing Ut into Ut ≡ Vt −Wt, where Vt ∼

N(0, τ2
∗ ), Wt := max[0, Qt], Qt ∼ N(µ∗, σ

2
∗), and Vt is independent of Wt. Here, it is assumed that

τ∗ > 0, σ∗ ≥ 0, and µ∗ ≥ 0, and Wt is employed to capture inefficiently produced outputs. If µ∗ = 0 and

σ2
∗ = 0, this model reduces to Zellner, Kmenta, and Drèze’s (1966) stochastic production function model,

producing outputs efficiently. The key to the identification of inefficiency is, therefore, in testing whether

µ∗ = 0 and σ2
∗ = 0.

The original model introduced by Aigner, Lovell, and Schmidt (1977) assumes µ∗ = 0, so that the mode

of Wt is always achieved at zero. Stevenson (1980) suggested to extend the model scope by letting µ∗ be

different from zero, and the model with unknown µ∗ has been popularly specified in empirical works since

then (e.g., Dutta, Narasimhan, and Rajiv (1999), Habib and Ljungqvist (2005)).
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Nevertheless, it is hard to find a proper methodology which tests µ∗ = 0 and σ2
∗ = 0 in prior literature

to the best of our knowledge. This is mainly because the likelihood value is not identified under the null.

Note that for each (β, σ, µ, τ), the log-likelihood is given as

Ln(β, σ, µ, τ) =
n∑
t=1

{
ln

[
φ

(
Yt −X′tβ + µ√

σ2 + τ2

)]
− 1

2
ln(σ2 + τ2)− ln

[
Φ

(
µ√
σ2

)
/Φ

(
µ̃t√
σ̃2

)]}
,

where φ( · ) and Φ( · ) are the probability density function (PDF) and cumulative density function (CDF) of

a standard normal random variable, respectively, and

µ̃t :=
τ2µ− σ2(Yt −X′tβ)

τ2 + σ2
and σ̃2 :=

τ2σ2

τ2 + σ2
.

Here, the log-likelihood is not identified if θ∗ := (β′∗, µ∗, σ∗, τ∗)
′ = (β′∗, 0, 0, τ∗) because µ∗/

√
σ2
∗ = 0/0,

so that ln[Φ(µ∗/
√
σ2
∗)] is not properly identified. Furthermore, if we let

µ̃∗t :=
τ2
∗µ∗ − σ2

∗Ut
τ2
∗ + σ2

∗
and σ̃2

∗ :=
τ2
∗σ

2
∗

τ2
∗ + σ2

∗
,

µ̃∗t/
√
σ̃2
∗ = 0/0, so that ln[Φ(µ̃∗t/

√
σ̃2
∗)] is not identified by the model.

Even further, this model is not differentiable (D). This aspect is verified by examining the first-order

directional derivative of the model. Some tedious algebra shows that for a given d := (d′β, dµ, dσ, dτ )′,

lim
h↓0

Ln(θ∗ + hd) = −n
2

ln(τ2
∗ ) +

n∑
t=1

ln

[
φ

(
Yt −X′tβ∗√

τ2
∗

)]
,

which is the log-likelihood desired by the null condition. This limit is obtained by particularly using the fact

that

lim
h↓0

Φ

(
hdµ√
(hdσ)2

)
= Φ

(
dµ√
d2
σ

)
and lim

h↓0
Φ

(
µ̃∗t(h;d)√
σ̃(h;d)2

)
= Φ

(
dµ√
d2
σ

)
,

where

σ̃∗(h;d)2 :=
(τ∗ + hdτ )2(hdσ)2

(τ∗ + hdτ )2 + (hdσ)2
and

µ̃∗t(h;d) :=
(τ∗ + hdτ )2hdµ − (hdσ)2(Yt −X′t(β∗ + hdβ))

(τ∗ + hdτ )2 + (hdσ)2
.

Using this directional limit, the first- and second-order directional derivatives of Ln( · ) at (β∗, 0, 0, τ∗) are

DLn(θ∗;d) =

n∑
t=1

1

τ3
∗

{
dτ (U2

t − τ2
∗ ) +

[
−dµ + X′tdβ − ψ (dµ, dσ)

]
τ∗Ut

}
,
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and

D2Ln(θ∗;d) =
n∑
t=1

1

τ4
∗

{
d2
σ(U2

t − τ2
∗ ) + d2

ττ
2
∗ − dτUt − (dµ −X′tdβ)τ∗][3dτUt − (dµ −X′tdβ)τ∗]

}
−

n∑
t=1

1

τ4
∗

{
ψ(dµ, dσ)2U2

t + ψ(dµ, dσ)[dµU
2
t − 4dττ∗Ut + (dµ − 2X′tdβ)τ2

∗ ]
}
,

respectively, where ψ(dµ, dσ) := |dσ|φ(dµ/|dσ|)/Φ(dµ/|dσ|). Here, if θ∗ = (β′∗, 0, 0, τ∗), it follows that

Ut ∼ N(0, τ2
∗ ). These directional derivatives are neither linear nor quadratic with respect to d, respectively,

so that Ln(·) is not twice D. Therefore, this model cannot be analyzed as for the standard D model. We

examine this model by letting

∆(θ∗) :=
{
d ∈ Rd+3 : d′d = 1, dµ ≥ 0, and dσ ≥ 0

}
to accommodate the condition that µ∗ ≥ 0 and σ∗ ≥ 0.

It is not hard to identify the asymptotic behaviors of the first- and second-order directional derivatives.

Note that DLn(θ∗;d) = Z1,n(d) + Z2,n(d), where for each d,

Z1,n(d) :=
dτ
τ3
∗

n∑
t=1

(U2
t − τ2

∗ ), Z2,n(d) :=
1

τ2
∗

n∑
t=1

[
X′tdβ +m (dµ, dσ)

]
Ut,

and m(dµ, dσ) := −[dµ+ψ (dµ, dσ)]. Here, ψ (·, ·) is Lipschitz continuous, so that Assumption 5(iii) holds

with respect to the first-order directional derivative. Furthermore, for each d, McLeish’s (1974, theorem

2.3) central limit theorem (CLT) can be applied to Z1,n(d) and Z2,n(d): for each d,

n−1/2

 Zn,1(d)

Zn,2(d)

⇒
 Z1(d)

Z2(d)

 ∼ N
 0

0

 , 1

τ2
∗

 2d2
τ 0

0 E[(X′tdβ +m (dµ, dσ))2]

 .

It follows that for each d and d̃,

E[Z1(d)Z1(d̃)] = 2
dτ d̃τ
τ2
∗
, E[Z1(d)Z2(d̃)] = 0, and

E[Z2(d)Z2(d̃)] =
1

τ2
∗

 m (dµ, dσ)

dβ

′  1 E[X′t]

E[Xt] E[XtX
′
t]

 m(d̃µ, d̃σ)

d̃β

 .
Here, Zn,1(d) and Zn,2(d) are linear with respect dτ and [m (dµ, dσ) ,d′β]′, respectively. From this fact,
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their tightness trivially follows, so that n−1/2DLn(θ∗; · ) ⇒ Z(·), where Z(·) is a zero-mean Gaussian

stochastic process such that for each d and d̃, E[Z(d)Z(d̃)] = B∗(d, d̃) and

B∗(d, d̃) :=
1

τ2
∗


dβ

m (dµ, dσ)

dτ


′ 

E[XtX
′
t] E[Xt] 0

E[X′t] 1 0

0 0 2




d̃β

m(d̃µ, d̃σ)

d̃τ

 .

Let Z(·) be defined as Z1(·) + Z2(·).

We provide another Gaussian stochastic process with the same covariance structure as that of Z(·). If

we let Z̃(d) := δ(d)′Ω
1/2
∗ W such that for each d,

δ(d) :=


dβ

m (dµ, dσ)

dτ

 , Ω∗ :=
1

τ2
∗


E[XtX

′
t] E[Xt] 0

E[X′t] 1 0

0 0 2

 ,

and W ∼ N(0k+2, Ik+2), it follows that E[Z̃(d)Z̃(d̃)] = δ(d)′Ω∗δ(d̃) which is identical to B∗(d, d̃),

so that Z̃(·) d
= Z(·). Furthermore, Z̃(·) is linear with respect to W. This feature makes it convenient to

analyze the asymptotic distribution of the first-order directional derivative.

The probability limit of the second-order directional derivative is similarly obtained. Note thatD2Ln(θ∗;

·) is Lipschitz continuous on ∆(θ∗), so that Assumption 5(iii) holds, and we can apply the law of large num-

bers (LLN):

1

n

n∑
t=1

U2
t = τ∗ + oP(1),

1

n

n∑
t=1

UtXt = oP(1), and
1

n

n∑
t=1

XtX
′
t = E[XtX

′
t] + oP(1).

This implies that

n−1D2Ln(θ∗;d)
a.s.→ − 1

τ2
∗

{
2d2

τ + E[(dµ −X′tdβ)2] + ψ(dµ, dσ)2 + 2[dµ − E[Xt]
′dβ]ψ(dµ, dσ)

}
,

and this is identical to −B(d,d). Thus, 2{Ln(θ̂n)− Ln(θ∗)} ⇒ supd∈∆(θ∗)[0,Y(d)]2 by Theorem 1(iii),

where

Y(d) :=
δ(d)′Ω

1/2
∗ W

{δ(d)′Ω∗δ(d)}1/2
,
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and for each d and d̃,

E[Y(d)Y(d̃)] =
δ(d)′Ω∗δ(d̃)

{δ(d)′Ω∗δ(d)}1/2{δ(d̃)′Ω∗δ(d̃)}1/2
.

As a result, the directional limit of the likelihood is well defined under the null, although the log-likelihood

is not properly identified under the null.

We can test the hypothesis of efficient production using the QLR, Wald, and LM test statistics. For this

examination, we let υ = (µ, σ)′, λ = β, τ = τ , and π = (β′,υ′)′ = (β′, µ, σ)′ and follow the notation in

Section 3 of Cho and White (2017). The hypotheses of interest here are

H0 : υ∗ = 0 versus H1 : υ∗ 6= 0.

Then, for each d and d̃,

B∗(d, d̃) =

 B
(π,π)
∗ (dπ, d̃π) 0′

0 2
τ2∗
dτ
′d̃τ

 ,
and

B
(π,π)
∗ (dπ, d̃π) =

1

τ2
∗

 d′βE[XtX
′
t]d̃β d′βE[X′t]m(dµ, dσ)

m(d̃µ, d̃σ)E[Xt]d̃β m(dµ, dσ)m(d̃µ, d̃σ)

 .
By the information matrix equality, for each d, B∗(d) is identical to −A∗(d).

The null limit distributions of the test statistics are identified by the theorems in Cho and White (2017).

First, we apply the QLR test statistic. Applying Theorem 2 shows that

LR(1)
n := 2{Ln(θ̂n)− Ln(θ∗)} ⇒ sup

sπ∈∆(π∗)
max[0,Y(π)(sπ)]2 +H2,

where for each sπ ∈ ∆(π∗) := {(s′β, sµ, sσ)′ ∈ Rk+2 : s′βsβ + s2
µ + s2

σ = 1, sµ > 0, and sσ > 0},

Y(π)(sπ) := {E[(s′βXt +m(sµ, sσ))2]}−1/2Z(π)(sπ),

Z(π)(sπ) := s′βZ(β) +m(sµ, sσ)Z(υ), and

 Z(β)

Z(υ)

 ∼ N
 0

0

 ,
 E[XtX

′
t] E[Xt]

E[X′t] 1

 .

Note that [Z(β)′ , Z(υ)]′ is the weak limit of n−1/2τ−1
∗
∑n

t=1[UtX
′
t, Ut]

′. Theorem 2(iv) implies thatLR(1)
n :=
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2{Ln(θ̂n) − Ln(θ∗)} ⇒ supsυ∈∆(υ∗) max[0, Ỹ(υ)(sυ)]2 + Z(β)′E[XtX
′
t]
−1Z(β) + H2, where for each

sυ∗ ∈ ∆(υ∗) := {(sµ, sσ)′ ∈ R2 : s2
µ + s2

σ = 1, sµ > 0, and sσ > 0},

Ỹ(υ)(sυ) := (B̃
(υ,υ)
∗ (sυ))−1/2Z̃(υ)(sυ),

B̃
(υ,υ)
∗ (sυ) := m(sµ, sσ)2{1− E[Xt]

′E[XtX
′
t]
−1E[Xt]},

and Z̃(υ)(sυ) := m(sµ, sσ){Z(υ) − E[Xt]
′E[XtX

′
t]
−1Z(β)}. Furthermore, Theorem 2 shows that

LR(2)
n := 2{Ln(θ̈n)− Ln(θ∗)} ⇒ sup

sβ∈∆(β∗)
max[0,Y(β)(sβ)]2 +H2,

where for each sβ ∈ ∆(β∗) := {sβ ∈ Rk : s′βsβ = 1}, Y(β)(sβ) := {s′βE[XtX
′
t]sβ}−1/2Z(β)′sβ,

and applying Theorem 2(iii) implies that LR(2)
n := 2{Ln(θ̈n) − Ln(θ∗)} ⇒ Z(β)′E[XtX

′
t]
−1Z(β) +H2.

Therefore, Theorem 2(iv) now yields that

LRn ⇒ sup
sυ∈∆(υ0)

max

[
0,

m(sµ, sσ)

|m(sµ, sσ)|
Z

]2

under H0, where Z := {1 − E[Xt]
′E[XtX

′
t]
−1E[Xt]}−1/2 {Z(υ) − E[Xt]

′E[XtX
′
t]
−1Z(β)} ∼ N(0, 1).

If we let r(x) := φ(x)/[xΦ(x)],

m(sµ, sσ)

|m(sµ, sσ)|
= − sµ
|sµ|

(
1 + r(sµ/|sσ|)
|1 + r(sµ/|sσ|)|

)
,

which is−1 uniformly on ∆(υ0). Thus, the null limit distribution reduces to max[0,−Z]2, and this implies

that LRn
A∼ max[0,−Z]2 under H0.

We conduct simulations to verify this. We let (X′t, Ut)
′ ∼ IID N(02, I2) and obtain the null limit

distribution of the QLR test statistic by repeating the same independent experiments 2,000 times for n =

50, 100, and 200. Simulation results are summarized in Figure 1 of this Supplement. Note that the null

distributions of the QLR test statistics exactly overlap with that of max[0,−Z]2.

Second, we examine the Wald test. For this, if we let

Ŵn(sµ, sσ) := m(sµ, sσ)2

{
1− n−1

n∑
t=1

X′t(n
−1

n∑
t=1

XtX
′
t)
−1n−1

n∑
t=1

Xt

}
,

the LLN implies that supsµ,sσ |Ŵn(sµ, sσ)−B̃(υ,υ)
∗ (sµ, sσ)| → 0 a.s.−P. In particular,m( · , · )2 is bounded
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by 1 and 2/π from above and below, respectively. Using Ŵn(sµ, sσ), we let the Wald test statistic be

Wn := sup
sµ,sσ

n{h̃(υ)
n (sµ, sσ)}{Ŵn(sµ, sσ)}{h̃(υ)

n (sµ, sσ)},

where h̃(υ)
n (sµ, sσ) is such that for each (sµ, sσ),

Ln(h̃(υ)
n (sµ, sσ)sµ,h̃

(υ)
n (sµ, sσ)sσ, β̃n(sµ, sσ), τ̃n(sµ, sσ))

= sup
{h(υ),β,τ}

Ln(h(υ)(sµ, sσ)sµ, h
(υ)(sµ, sσ)sσ,β, τ).

Theorem 3 implies that Wn ⇒ supsυ∈∆(υ0) max[0, Ỹ(υ)(sυ)]2, and this weak limit is identical to that of

the QLR test statistic. Thus,Wn
A∼ max[0,−Z]2 under H0.

Finally, we investigate the LM test statistic. We let the LM test statistic be

LMn := sup
(sµ,sσ ,sβ)∈∆(υ0)×∆(β̈n)

nW̃n(sµ, sσ, sβ) max

[
0,
−DLn(θ̈n; sµ, sσ)

D̃2Ln(θ̈n; sµ, sσ, sβ)

]2

,

where θ̈n = (β̈n, 0, 0, τ̈n) with β̈n = (
∑n

t=1 XtX
′
t)
−1
∑n

t=1 XtYt, τ̈n = (n−1
∑2

t=1 Ü
2
t )1/2, Üt := Yt −

X′tβ̈n, ∆(β̈n) := {x ∈ Rk : x′x = 1}, DLn(θ̈n; sµ, sσ) = {m(sµ, sσ)/τ̈2
n}
∑n

t=1 Üt, and

−D̃2Ln(θ̈n; sµ, sσ, sβ) =
1

τ̈4
n

n∑
t=1

{s2
σ(τ̈2

n − Ü2
t ) + ψ(sµ, sσ)2Ü2

t + ψ(sµ, sσ)sµ(Ü2
t + τ̈2

n) + s2
µτ̈

2
n}

− m(sµ, sσ)2

τ̈2
n

n∑
t=1

s′βXt

(
s′β

n∑
t=1

XtX
′
tsβ

)−1 n∑
t=1

X′tsβ.

In particular, applying the LLN implies that for each (sµ, sσ),

− 1

n
D̃2Ln(θ̈n; sµ, sσ, sβ) =

m(sµ, sσ)2

τ2
∗

{1− s′βE[Xt](s
′
βE[XtX

′
t]sβ)−1E[X′t]sβ}+ oP(1).

This LLN holds uniformly on ∆(υ0)×∆(β̈n). Thus, for each (sµ, sσ, sβ), we may let

W̃n(sµ, sσ, sβ) :=
m(sµ, sσ)2

τ2
∗

1− n−1
n∑
t=1

s′βXt

(
s′βn

−1
n∑
t=1

XtX
′
tsβ

)−1

n−1
n∑
t=1

X′tsβ

 .

7



Here, applying the proof of Corollary 1(vii) implies that

sup
sβ∈∆(β̈n)

nW̃n(sµ, sσ, sβ) max

[
0,
−DLn(θ̈n; sµ, sσ)

D̃2Ln(θ̈n; sµ, sσ, sβ)

]2

= max

[
0,

m(sµ, sσ)

|m(sµ, sσ)|
n−1/2

∑n
t=1 Üt

{τ2
∗ (1− E[Xt]′E[XtX′t]

−1E[Xt])}1/2

]2

+ oP(1)

by optimizing the objective function with respect to sβ, so that

LMn = sup
(sµ,sσ)∈∆(υ0)

max

[
0,

m(sµ, sσ)

|m(sµ, sσ)|
n−1/2

∑n
t=1 Üt

{τ2
∗ (1− E[Xt]′E[XtX′t]

−1E[Xt])}1/2

]2

+ oP(1)

under H0. Therefore, LMn
A∼ max[0,−Z]2 by noting that

m( · , · )
|m( · , · )|

= −1

on ∆(υ0) and n−1/2
∑n

t=1 Üt ∼ N [0, τ2
∗ (1− E[Xt]

′E[XtX
′
t]
−1E[Xt])].

Before moving to the next example, some remarks are warranted. Here, we assume µ∗ ≥ 0 so that dµ

is always greater than or equal to zero, and this is assumed to avoid the failure of numerical simulation. It

is more general to suppose that µ∗ can also be negative, so that for some positive c > 0, µ∗ ∈ [−c, c]. For

such a case, for example, the null limit distribution of the QLR test is modified into

LRn ⇒ sup
sυ∈∆(υ0)′

max

[
0,

m(sµ, sσ)

|m(sµ, sσ)|
Z

]2

,

where ∆(υ0)′ := {(sµ, sσ) ∈ R2 : s2
µ + s2

σ = 1 and sσ > 0}. Furthermore, it analytically follows that

m(sµ, sσ)/|m(sµ, sσ)| = −1 uniformly on ∆(υ0)′, so that LRn ⇒ max[0,−Z]2, which is the same as for

the case in which µ∗ ≥ 0 is assumed. Nevertheless, Monte Carlo experiments showed that the empirical

distribution of LRn exactly overlaps with that of Z2 under the null.

This discrepancy arises mainly because the value of m(sµ, sσ) sensitively responds to the value of

(sµ, sσ), so that we obtain that m( · , · )/|m( · , · )| = ±1 numerically on ∆(υ0)′, implying that

LRn ⇒ sup
sυ∈∆(υ0)′

max

[
0,

m(sµ, sσ)

|m(sµ, sσ)|
Z

]2

= sup
sυ∈∆(υ0)′

max [0,−Z,Z]2 = Z2

as could be revealed by Monte Carlo experiments. More precisely, if sµ < 0 and sσ > 0, so that

we can let sµ = −
√

1− s2
σ, it analytically follows that for any sσ > 0, m(−

√
1− s2

σ, sσ) < 0, and

8



limsσ↓0m(−
√

1− s2
σ, sσ) = 0. Nevertheless, computing m(−

√
1− s2

σ, sσ) requires a high level of preci-

sion when sσ is close to 0. Standard statistical packages do not provide this level of precision. Numerically,

most statistical packages compute m(−
√

1− s2
σ, sσ) that oscillates around zero as sσ converges to 0, so

that m( · , · )/|m( · , · )| is obtained as ±1 on ∆(υ0)′. We avoid this numerical failure by restricting our

parameter space.

2.2 Example 2: Box-Cox’s (1964) Transformation

Applying the directional derivatives makes model analysis more sensible for nonlinear models with irregular

properties. Box and Cox’s (1964) transformation belongs to this case. We consider the following model:

Yt = Zt
′θ0 +

θ1

θ2
(Xθ2

t − 1) + Ut, (1)

where {(Yt, Xt,Zt
′) ∈ R2+k : t = 1, 2, · · · } is assumed to be IID, Xt is strictly greater than zero almost

surely, and Ut := Yt − E[Yt|Zt, Xt]. Furthermore, θ := (θ′0, θ1, θ2)
′ ∈ Θ0 × Θ12, Θ0 is a convex and

compact set in Rk, and

Θ12 := {(y, z) ∈ R2 : cy ≤ z ≤ c̄y <∞, 0 < c < c̄ <∞, and z2 + y2 ≤ m̄ <∞}.

Our interests are in testing whether Xt influences E[Yt|Zt, Xt].

This model is introduced to avoid Davies’s (1977,1987) identification problem. If the Box-Cox trans-

formation is specified in the conventional way as in Hansen (1996) so that

Yt = Zt
′θ0 + β1(Xγ

t − 1) + Ut

is assumed, then γ∗ is not identified when β1∗ = 0, where the subscript ‘∗’ indicates the limit of the nonlinear

least squares (NLS) estimator. We may instead examine another null hypothesis: γ∗ = 0. Note that letting

γ∗ = 0 renders β1∗ unidentified.

We avoid the identification problem by reparameterizing the model using θ1 and θ2 as given in (1). If

θ2∗ = 0, θ1∗ must be zero by the model condition on Θ12, and the identification problem no longer arises.

Nevertheless, the reparameterized model becomes obscure by the null condition: θ1∗ = 0 and θ2∗ = 0.

If so, the null model is not properly obtained from the given model specification. Note that θ1∗(X
θ2∗
t −

1)/θ2∗ = 0× 0/0, implying that the standard test statistics cannot be applied.

On the other hand, the directional limits are well defined, and they can be used to analyze the asymptotic
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behavior of the quasi-likelihood. For this purpose, we let d = (d′0, d1, d2)
′ and θ∗ = (θ0∗

′, 0, 0)
′ with θ0∗

interior to Θ0. The following quasi-likelihood is obtained from this:

Ln(θ∗ + hd) = −1

2

n∑
t=1

{
Yt − Zt

′(θ0∗ + d0h)− d1

d2
(Xd2h

t − 1)

}2

,

which is now D with respect to h at 0. Therefore, for each d, limh↓0 Ln(θ∗ + hd) = −1
2

∑n
t=1{Yt −

Zt
′θ0∗}2. The first two directional derivatives are

DLn(θ∗;d) =
n∑
t=1

Ut{Zt′d0 + log(Xt)d1}, and (2)

D2Ln(θ∗;d) = −
n∑
t=1

{Zt′d0 + log(Xt)d1}2 +
n∑
t=1

Ut{log(Xt)}2d1d2, (3)

which are linear and quadratic in (d0, d2, d2), respectively. Therefore, the model may be analyzed as if it is

D, although the null model is not properly obtained from the given model.

As a remark regarding this model, this reformulation implies that there is a hidden identification problem

associated with d1/d2. Note that d1/d2 lacks its corresponding distance and disappears if h is zero, so that

d1/d2 is not identified at θ∗ = (θ0∗
′, 0, 0)

′.

Using the first- and second-order directional derivatives in (2) and (3),

n−1/2DLn(θ∗;d)⇒ d̈
′
W and n−1D2Ln(θ∗;d)→ d̈

′
A∗d̈

a.s.−P, where d̈ ∈ ∆̈(θ∗) := {x ∈ Rk+1 : ‖x‖ = 1}, W is a multivariate normal:

 n−1/2
∑
UtZt

′

n−1/2
∑
Ut log(Xt)

⇒W :=

 W0
′

W1

 ∼ N(0,B∗)

with B∗ being a (k + 1)× (k + 1) positive definite matrix with a finite maximum eigenvalue, and

A∗ :=

 A
(0,0)
∗ A

(0,1)
∗

A
(1,0)
∗ A

(1,1)
∗

 :=

 −E[ZtZt
′] −E[Zt log(Xt)]

−E[log(Xt)Zt
′] −E[log(Xt)

2]

 .
Here, we assume E[log(Xt)

2] <∞ and for each j, E[Z2
t,j ] <∞ to obtain the weak limit W.

We separate the set of directions into ∆̈(θ∗) and the set for d2 and derive the asymptotic distribution

more efficiently. Through this separation, the maximization process is separated into a two-step maximiza-
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tion process:

2{Ln(θ̂n)− Ln(θ∗)} ⇒ sup
d2

sup
d̈∈∆̈(θ∗)

max[0,W′d̈]2{−d̈′A∗d̈}−1

= sup
d̈∈∆̈(θ∗)

max[0,W′d̈]2{−d̈′A∗d̈}−1 = W′(−A∗)
−1W

by Theorem 1(iii), where θ̂n is the NLS estimator, and applying the proof of Corollary 1(vii) obtains the

last equality. Note that maximizing the limit with respect to d2 is an innocuous process to obtaining the

null limit distribution because d2 vanishes at the limit. We note that the limit result is the same as what is

obtained when an identified model is D.

For data inference through this model, we let π = (λ′,υ′)
′ such that λ = θ0 and υ = θ2, so that

Ω = Θ0, and M is a closed interval with zero as an interior element. These parameters are introduced to

follow the notational convention in Section 3 of Cho and White (2017). Note that θ1∗ = 0 if and only if

θ2∗ = 0 from the model assumption. Using the model conditions, we can apply Theorem 2(iv):

LRn ⇒ sup
sυ∈∆(υ0)

max[0, Ỹ(υ)(sυ)]2,

where sυ := s1, ∆(υ0) := {−1, 1}, and

Ỹ(υ)(sυ) :=
s1Z̃(υ)

|s1|(Ã(υ,υ)
∗ )1/2

:=
s1(W1 − (−A

(0,1)
∗ )(−A

(0,0)
∗ )−1W0)

|s1|{(−A(1,1)
∗ )− (−A(1,0)

∗ )(−A
(0,0)
∗ )−1(−A(0,1)

∗ )}1/2
.

Note that s1/|s1| = ±1, and from this

LRn ⇒ Z̃(υ)(Ã
(υ,υ)
∗ )−1Z̃(υ).

In a similar way, we can apply Theorem 3 to the Wald test statistic. Note that
√
nh̃

(µ)
n (sυ) ⇒ (Ã

(υ,υ)
∗ )−1

max[0, s1Z̃(υ)], and select Ŵn to be a consistent estimator for (Ã
(υ,υ)
∗ )−1. For example, if we let

Ŵn := {(n−1
∑

log(Xt)
2)− (n−1

∑
log(Xt)Zt

′)(n−1
∑

ZtZt
′)−1(n−1

∑
Zt log(Xt))}−1,

then

Wn := n{h̃(υ)
n (sυ)}{Ŵn}{h̃(υ)

n (sυ)} ⇒ Z̃(υ)(Ã
(υ,υ)
∗ )−1Z̃(υ)

by Theorem 3. Finally, Theorem 4 obtains the same null limit distribution for the LM test statistic using the

11



same weight function.

2.3 Example 3: Generalized Method of Moments (GMM)

Hansen (1982) examined an estimation method by generalizing the method of moments estimation which

requires differentiability as one of the regularity conditions. We consider the GMM estimator θ̂n obtained

by maximizing

Qn(θ) := gn(Xn;θ)′ {−Mn}−1 gn(Xn;θ)

with respect to θ, where {Xt : t = 1, 2, · · · } is a sequence of strictly stationary and ergodic random

variables, gn(Xn;θ) := n−1
∑n

t=1 q(Xt;θ) with qt := q(Xt; · ) : Θ 7→ Rk being D a.s.–P on Θ given

in Assumption 2 (r ≤ k) such that for each θ ∈ Θ, q( · ;θ) is measurable, and Mn is a symmetric and

positive definite random matrix a.s.–P uniformly in n that converges to a symmetric and positive definite

M∗ a.s.–P. Furthermore, for some integrable m(Xt), ‖qt( · )‖∞ ≤ m(Xt) and ‖∇θqt( · )‖∞ ≤ m(Xt),

and there is a unique θ∗ which maximizes E[qt(·)]′{−M∗}−1E[qt(·)] on the interior part of Θ. We denote

the uniform matrix norm by ‖ · ‖∞. We further suppose that n1/2gn(Xn;θ∗) ⇒W ∼ N(0,S∗) for some

positive-definite matrix S∗. The GMM estimator is widely applied for empirical studies.

The given conditions for Qn(·) do not exactly satisfy the conditions in Assumption 2. Even so, our D-D

analysis can be easily adapted to the GMM estimation framework. Directional derivatives play a key role as

before. We note that the first-order directional derivative of gn( · ) := gn(Xn; · ) is

Dgn(θ;d) = ∇θgn(Xn;θ)′d, (4)

where ∇θgn(Xn;θ) := [∇θ1g1,n(Xn;θ), · · · ,∇θrgk,n(Xn;θ)]′ and gj,n(Xn;θ) is the j-th element of

gn(Xn;θ). As (4) makes it clear, Dgn(θ;d) is now linear with respect to d. Applying the mean-value

theorem implies that for each d,

gn(θ;d) = gn(θ∗;d) +Dgn(θ̄;d)(θ − θ∗). (5)

Here, θ̄ := [θ̄1, · · · , θ̄r] is the collection of the parameter values between θ and θ∗, and Dgn(θ̄;d) denotes

[∇θ1g1,n(Xn; θ̄1), · · · ,∇θrgk,n(Xn; θ̄r)]
′d. Furthermore, DQn(θ;d) = −2d′∇θgn(θ)′M−1

n gn(θ). This

implies that for each d, n1/2DQn(θ∗;d) ⇒ −2d′C′∗M
−1
∗ W by the CLT. Here, we applied the LLN to

obtain that ∇θgn(θ∗) converges to C∗ := E[∇θqt(θ∗)] a.s.−P by the fact that ‖∇θqt( · )‖∞ ≤ m(Xt).

We below use these facts and the vehicles for D-D analysis to obtain the asymptotic behavior of the GMM
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estimator.

Given (4), it is trivial to show that {n1/2DQn(θ∗; · )} is asymptotically tight by the fact that it is linear

with respect to d. Next, we obtain that for some θ̄ between θ and θ∗,

n{Qn(θ)−Qn(θ∗)} = −2d′∇θgn(θ̄)
′
M−1

n

√
ngn(θ∗)

√
nh− d′∇θgn(θ̄)′M−1

n ∇θgn(θ̄)d(
√
nh)2

by substituting gn in (5) into Qn(·), and so

n{Qn(θ̂n)−Qn(θ∗)} ⇒ sup
d

sup
h
−2d′C∗

′M−1
∗ Wh− d′C∗′M−1

∗ C∗dh
2.

We may let Z(d) := −d′C∗′M−1
∗ W and A∗(d) := −d′C∗′M−1

∗ C∗d. Note that these derivatives are

linear and quadratic in d, respectively. Therefore,

n{Qn(θ̂n)−Qn(θ∗)} ⇒W′M−1
∗ C∗{−C∗

′M−1
∗ C∗}−1C∗

′M−1
∗ W

by applying Corollary 1(vii). Furthermore, we obtain that

√
n(θ̂n − θ∗)⇒− {C∗′M−1

∗ C∗}−1C∗
′M−1
∗ W

∼ N(0, {C∗′M−1
∗ C∗}−1{C∗′M−1

∗ S∗M
−1
∗ C∗}{C∗′M−1

∗ C∗}−1).

These are the same results as for the standard GMM literature (e.g., Newey and West, 1987).

As the objective function is D, we simply let θ = π = (υ′,λ′)′ for testing the hypothesis and follow the

notational convention in Section 3 of Cho and White (2017). Note that the objective functionQn(·) does not

satisfy the condition in Assumption 2, by which the definition of the QLR test statistic cannot be applied.

Nevertheless, we similarly define a QLR test-like test statistic. We let

QLRn := n{sup
υ,λ

Qn(υ,λ)− sup
λ
Qn(υ0,λ)}

and let C∗
′{−M∗}−1W and C∗

′{−M∗}−1C∗ be Z(π) = (Z(υ)′,Z(λ)′)
′

and A
(π,π)
∗ in Cho and White

(2017), respectively. The null limit distribution of the QLR test statistic is obtained as

QLRn ⇒ (Z̃(υ))
′
(−Ã

(υ,υ)
∗ )−1(Z̃(υ)),

where Z̃(υ) := Z(υ) − (A
(υ,λ)
∗ )(A

(λ,λ)
∗ )−1Z(λ) and Ã

(υ,υ)
∗ := A

(υ,υ)
∗ − (A

(υ,λ)
∗ )(A

(λ,λ)
∗ )−1(A

(λ,υ)
∗ )

′
by
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applying Corollary 1.

We can define the Wald test statistic using the GMM estimator and derive its null limit distribution as

before. That is,

QWn := sup
sυ∈∆(υ0)

n{h̃(υ)
n (sυ)}{Ŵn(sυ)}{h̃(υ)

n (sυ)},

where h̃(υ)
n (sυ) is such that for each sυ ∈ ∆(υ0),

Qn(υ0 + h̃(υ)
n (sυ)sυ, λ̃n(sυ)) := sup

{h(υ),λ}
Qn(υ0 + h(υ)sυ,λ),

and its null limit distribution is obtained by applying Theorem 3. Note that the definition ofQWn is exactly

the same asWn except that h̃(υ)
n (sυ) is defined using Qn(·) instead of Ln(·). If we further let the weight

function Ŵn(sυ) be sυ ′Ŵnsυ such that Ŵn converges to −Ã
(υ,υ)
∗ a.s.−P,

QWn ⇒ sup
sυ∈∆(υ0)

max[0, sυ
′Z̃(υ)](−sυ ′Ã(υ,υ)

∗ sυ)−1 max[0, sυ
′Z̃(υ)].

The proof of Corollary 1(vii) corroborates that the null limit distribution of QWn is equivalent to that of

QLRn particularly because υ0 is an interior element.

Finally, we define the LM test statistic in the GMM context and examine its null limit distribution. For

this purpose, we let

QLMn := sup
(sυ ,sλ)∈∆(υ0)×∆(λ̈n)

nW̃n(sυ, sλ) max

[
0,

DQn(θ̈n; sυ)

2D̃2Qn(θ̈n; sυ, sλ)

]2

,

where for each (sυ, sλ),

D̃2Qn(θ̈n; sυ, sλ) := Dgn(θ̈n; sυ)′{−Mn}−1Dgn(θ̈n; sυ)

−Dgn(θ̈n; sυ)′{−Mn}−1Dgn(θ̈n; sλ){Dgn(θ̈n; sλ)′{−Mn}−1Dgn(θ̈n; sλ)}−1

×Dgn(θ̈n; sλ)′{−Mn}−1Dgn(θ̈n; sυ),

and θ̈n := (υ0, λ̈n) such that λ̈n := arg maxλQn(υ0,λ). If we let W̃n(sυ, sλ) = sυ
′Ŵnsυ for each

(sυ, sλ) ∈ ∆(υ0)×∆(λ∗),

QLMn ⇒ (Z̃(υ))
′
(−Ã

(υ,υ)
∗ )−1(Z̃(υ))

by Theorem 4, the interiority condition of υ0, and the proof of Corollary 1(vii), where Ŵn is the weight
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matrix used for QWn.

Indeed, many other nonlinear models share the D-D model features in addition to the models we exam-

ined here. For example, table 1 of Cheng, Evans, and Iles (1992) collects a number of nonlinear models with

parameter instability problems. Many of them can be analyzed using the approach of the current study. Fur-

thermore, D-D analysis simplifies dimensional complexities that arise when higher-order approximations are

necessary for model analysis. Cho, Ishida, and White (2011, 2014) and White and Cho (2012) revisit testing

neglected nonlinearity using artificial neural networks, and it requires higher-order model approximations.

They resolve the relevant issues by applying the D-D model analysis of this study.

3 Differentiable Model and Directionally Differentiable Model

In this section, we provide sufficient conditions for a twice D-D function to be twice D.

Theorem C1. If a function f : Θ 7→ R is (i) D-D on Θ; (ii) for each θ,θ′ and for some M < ∞,

|Df(θ′;d)−Df(θ;d)| ≤M‖θ′ − θ‖ uniformly on ∆(θ) ∩∆(θ′); and (iii) for each θ ∈ Θ, Df(θ;d) is

linear in d ∈ ∆(θ), then f : Θ 7→ R is D on Θ. �

Proof of Theorem C1: Refer to Troutman (1996, p. 122). �

Theorem C2. In addition to the conditions in Theorem C1, if a function f : Θ 7→ R is (i) twice D-D on

Θ; (ii) for each θ,θ′ and for some M < ∞, |D2f(θ′; d̃;d) −D2f(θ; d̃;d)| ≤ M‖θ′ − θ‖ uniformly on

∆(θ)∩∆(θ′)×∆(θ)∩∆(θ′); and (iii) for each θ ∈ Θ, the directional derivative ofDf(θ;d) with respect

to d̃ is linear in d̃ ∈ ∆(θ), then f : Θ 7→ R is twice D on Θ. �

Proof of Theorem C2: To show the given claim, we note that f(·) is differentiable on Θ by Theorem C1

and denote the gradient of f(·) as A(·). We next show that for some B(·),

lim
‖θ̃−θ0‖→0

sup
‖θ−θ0‖=1

1

‖θ̃ − θ0‖

∣∣∣A(θ̃)′(θ − θ0)−A(θ0)′(θ − θ0)− (θ̃ − θ0)′B(θ0)(θ − θ0)
∣∣∣ = 0.

If we let g(h) := f(θ0 + hd), g(·) is twice D from the given condition, so that we can apply the

mean-value theorem: for some h̄ ≥ 0

g′(h) = g′(0) + g′′(h̄)h,
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implying that Df(θ0 + hd̃;d) = Df(θ0;d) +D2f(θ0;d; d̃)hh̄, where

D2f(θ0; d̃;d) := lim
h↓0

Df(θ0 + hd̃;d)−Df(θ0;d)

h
.

Given this, note that the given conditions imply thatDf(θ0;d) = A(θ0)′d andD2f(θ0; d̃;d) = d̃
′
B(θ0)d.

Therefore, if we let θ̃ := θ0 + hd̃, then A(θ̃)′d = A(θ0)′d+ hd̃
′
B(θ0 + h̄d̃)d, so that

A(θ̃)′d−A(θ0)′d− hd̃
′
B(θ0)d ≤ hd̃

′
B(θ0 + h̄d̃)d− hd̃

′
B(θ0)d,

implying that

1

h
|A(θ̃)′d−A(θ0)′d− hd̃

′
B(θ0)d| ≤ |d̃

′
[B(θ0 + h̄d̃)−B(θ0)]d| ≤M · ‖θ̃ − θ0‖,

where the last inequality follows from the uniform bound condition. We further note that h = ‖θ̃ − θ0‖.

This implies that

lim
‖θ̃−θ0‖→0

1

‖θ̃ − θ0‖
|A(θ̃)′d−A(θ0)′d− hd̃

′
B(θ0)d| ≤ lim

‖θ̃−θ0‖→0
M · ‖θ̃ − θ0‖ = 0.

This completes the proof. �
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Figure 1: EMPIRICAL AND ASYMPTOTIC DISTRIBUTIONS OF THE QLR TEST STATISTIC. This figure
shows the null limit distribution of the QLR test statistic, which is obtained as max[0,−Z]2, and the em-
pirical distributions of the QLR test statistic for various sample sizes: n = 50, 100, and 500. The number
of iterations for obtaining the empirical distributions is 2,000. We can see that the empirical distributions
almost overlap with the null limit distribution even when the sample size is as small as 50.
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