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Abstract: This paper presents a new method to analyze the e¤ect of shocks on time series using

quantile impulse response function (QIRF). While conventional impulse response analysis is re-

stricted to evaluation using the conditional mean function, here, we propose an alternative impulse

response analysis that traces the e¤ect of economic shocks on the conditional quantile function. By

changing the quantile index over the unit interval, it is possible to measure the e¤ect of shocks on

the entire conditional distribution of a given variable in our framework. Therefore we can observe

the complete distributional consequences of policy interventions, especially at the upper and lower

tails of the distribution as well as at the mean. Using the new approach, it becomes possible to

evaluate two distinct features, namely, (i) the degree of uncertainty of a shock by measuring how

the dispersion of the conditional distribution is changed after a shock, and (ii) the asymmetric e¤ect

of a shock by comparing the responses to an impulse at the lower tails with those at the upper tails

of the conditional distribution. None of these features can be observed in the conventional impulse

response analysis exclusively based on the conditional mean function. In addition to proposing the
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QIRF, our second contribution is to present a new way to jointly estimate a system of multiple

quantile functions. Our proposed system quantile estimator is obtained by extending the result of

Jun and Pinkse (2009) to the time series context. We illustrate the QIRF on a VAR model in a

manner similar to Romer and Romer (2004) in order to assess the impact of a monetary policy

shock on the US economy.
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1 Introduction

Central banks have used past forecast errors or split normal densities of forecasts in order to convey

the uncertainty around in�ation projections for more than two decades. These projections, known

as �fan charts,� convey the projected conditional distributions of in�ation into the future. The

practice began in the Bank of England in 1996, and was quickly followed by other in�ation targeting

central banks such as the Swedish Riksbank, 1997, and in the Reserve Bank of New Zealand 2002.

More recently, in 2017, the Fed added them to its communication tools. The main reasons for the

use of fan charts is to convey the uncertainty and asymmetries around the in�ation projection, and

to avoid spurious precision associated with the use of a single point forecast. Despite the clear

logic of this approach, many central banks use fan charts to convey the distribution of in�ation in

monetary policy communication, but continue to use VAR models and associated impulse response

functions at the conditional mean of in�ation in order to form monetary policy decisions. There is

some inconsistency here, and one that suggests improvements could be made by using distributional

information more systematically. To remedy this inconsistency in practice, we propose a quantile

impulse response function that can provide conditional quantile impulse responses to show the

projections of variables of interest from di¤erent parts of the distribution. It is entirely consistent

with the logic of fan charts in central bank communication and brings with it all the advantages of

showing conditional distributions.

The quantile regression method, originally pioneered by Koenker and Bassett (1978), has become

a useful part of the modern econometric toolbox because of its �exibility in permitting researchers

to investigate the relationship between economic variables over the entire conditional distribution

of interest and particularly at the tails. Recent years have witnessed the surge in applications of

the method to time-series models, either theoretically or empirically. Some representative papers

include Koenker and Xiao (2006), Galvao (2009), Xiao (2009), Galvao et al. (2009), Greenwood-
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Nimmo et al. (2013), Cho et al. (2015), and White et al. (2015), which have provided new

insights that conventional mean-centered regression models would not have revealed, such as, for

example, a measure of the degree of tail interdependence in terms of value at risk (VaR). Despite

these important contributions, scant attention has been paid to the application of the quantile

regression method to conjectural economic analysis, especially in measuring the e¤ect of policy

shocks on economic variables of interest, such as in�ation or output. This is in spite of the fact that

the economic environment in which monetary policy is designed since the Great Financial Crisis

(GFC) has experienced sluggish growth and exceptionally low in�ation and interest rates.

The exception to this story of neglect is White et al. (2015), which traces the e¤ects of shocks

in impulse response functions in quantile regression models, as opposed to the conventional mean-

centered regressions to derived a pseudo quantile impulse response function tracing the e¤ect of a

shock on the conditional quantile function, but in a fairly restrictive setting. The pseudo quantile

impulse response function is set up under conditions where (i) they do not allow any dynamics in the

�rst moment of variables in their quantile models; and (ii) they consider only a special case in which

a shock is given to the observable variables rather than to the structural error. This paper presents a

new and proper impulse response analysis in quantile models by solving the two problems in White

et al.(2015). We will allow dynamics in the �rst moment of structural variables by employing the

structural vector-autoregression (SVAR) model, and introduce a shock to structural errors rather

than the observable structural variables.

Recently, Chavleishvili and Manganelli (2016) propose another way of deriving quantile impulse

response functions independently. Their setting is di¤erent from ours in that they consider only

a bivariate system of two variables and one of the two is assumed to evolve exogenously to the

system. Such a setting may be suitable for �nancial markets where the market portfolio can be

assumed to be exogenous to individual stock returns. The method to de�ne a structural shock is
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also di¤erent. They set the structural error for the exogenous variable to zero in such way that

the exogenous variable is equal to a speci�c quantile. Hence, the shock is given de facto to the

observable exogenous variable, similarly to White et al. (2015). On the contrary, we will consider

a general multivariate system where all the variables are endogenous and a shock is given to the

corresponding structural error.

To develop the proposed method, we start with the SVAR in the conditional mean, which is

used to identify a structural shock.1 We permit an intervention into the structural errors to a¤ect

the entire conditional distribution, and the e¤ect of an identi�ed structural shock on the conditional

quantile function is called the �quantile impulse response function�(QIRF). This o¤ers a method

to observe the e¤ect of shocks given to the structural error on the entire conditional distribution of

the observable structural variables, and not just the mean. It also has two other advantages over

conventional impulse responses that are consistent with the logic behind the use of fan charts for

in�ation projections. First, the impact of shocks on the in�ation distribution (represented visually

by a fan chart) conveys the uncertainty surrounding a structural shock. The impact of shocks on

the distribution can be measured by the conditional quantile ranges of some key economic variables

such as in�ation based on the dispersion of the conditional distribution. Second, QIRF can capture

asymmetry in the responses under di¤erent circumstances, so that behavior of economic agents

under high in�ation risk does not need to be identical (symmetric) to behavior toward low in�ation

risk. The asymmetry can be captured by the di¤erent responses between upper and lower quantiles

shown by an asymmetric QIRF with respect to the direction of a shock, that is, positive or negative

shocks have di¤erent impacts. Therefore, our methods provide researchers and policy makers with

1Once a structural shock is identi�ed in the conditional mean VAR model, we do not need further to impose

identifying restrictions on the subsequently de�ned conditional quantile model and therefore, using a reduced form

does not pose any problem in obtaining the quantile response to the identi�ed shock.
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a broader perspective on the dynamics of macroeconomic and �nance variables following a shock.2

The new methods are useful to central banks in setting policies under conditions that their key

variables are likely to be in the tails of their conditional distributions, rather than at the mean,

that is, deep recessions, and ultra low in�ation and interest rates. In this sense, the proposed QIRF

can allow researchers to investigate the e¤ects of a monetary shock to some key macroeconomic

variables at the tails as required without making the assumption (which may not be valid) that the

e¤ects are the same as those reported at the conditional mean or symmetric around the mean.

In addition to the main contribution of proposing the QIRF, another contribution of this study

to the literature is to present a new way to jointly estimate a system of multiple quantile functions.

Jun and Pinkse (2009) has developed a system estimation method for multiple conditional quantile

functions, but their method is not directly applicable to serially dependent variables such as ours.

Hence, we extend the system quantile estimator of Jun and Pinkse (2009) to the time series context.

Speci�cally, we �rst suggest a set of consistent estimators for all parameters in the system, based

on the weighted quantile moment conditions. Then, an e¢ cient GMM type estimator is proposed

where the moment weight follows the idea of Jun and Pinkse (2009). The estimator is specialized

to Koenker and Vuoung(2009)�s e¢ cient estimator in univariate cases and is equivalent to Jun and

Pinkse (2009) if variables are iid. Considering both the possibility of multiple local optima and the

curse of the dimensionality problem, we suggest using the Laplace type quantile estimation (LTE)

technique of Chernozhukov and Hong (2003). We provide conditions for the consistency, and derive

its asymptotic distribution.

We apply the proposed method to assess the impact of monetary policy shocks on the US

2 It is possible that a positive shock reduces either the conditional variance or the conditional inter-quantile ranges

of the whole conditional distribution of the variable of interest, while a negative shock can have the opposite e¤ect.

Similar attempts to capture the asymmetric impulse responses have been introduced using Markov-switching or

threshold models to the conventional VAR (Ehrmann et al., 2003; Granger and Yoon, 2002; Hatemi, 2014).

6



economy using a standard three variable VAR, in employment growth, in�ation, and the Romer and

Romer (2004) measure of the monetary policy shock. Using our QIRF approach, we demonstrate

the e¤ects of contractionary and expansionary monetary policy shocks on the whole conditional

distributions for employment growth and in�ation. We can illustrate the asymmetric responses of

the distribution in each of the tails and measure the change in the dispersion of the distribution after

contractionary and expansionary monetary policy shocks. These additional pieces of information

provide the policy maker with a fuller understanding of the e¤ects of policy on the conditional

distribution of variables of interest.

Recently Adrian et al. (2019) have used multiple quantile models to analyze the asymmetric

patterns in the conditional distributions of US growth and in�ation rates. They assume an asym-

metric t-distribution for the growth and in�ation variables, and use the �tted values from multiple

quantile regressions to estimate the parameters of the conditional distributions. A similar method

can be applied to our quantile impulse response functions in such a way that multiple quantile

impulse responses can be used to estimate the changes in the shape of generalized parametric

conditional distribution functions (such as skewed t-distribution (Fernandez and Steel, 1998), gen-

eralized t-distribution (Theodossiou, 1998), and asymmetric power distribution (Fernandez et al.,

1995; Komunjer, 2007) after an economic shock. Our VAR model for QIRF can be also generalized

to nonlinear quantile models such as CAViaR of Engle and Manganelli (2004) and MQCAViaR of

White et al. (2014, 2015) if we add lags of the quantile functions as exogenous variables.

The rest of this paper is organized as follows. Section 2 introduces a linear conditional quantile

model in the SVAR framework and Section 3 proposes the quantile impulse response function.

Section 4 provides estimation methods. Section 5 shows an application of the quantile impulse

response to US monetary policy. Section 6 provides some concluding remarks.
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2 The SVAR Model with Heteroscedastic Quantiles

Let us consider a sequence of random variables denoted by fztg = f(y0t; x0t) : t = 1; 2; :::; Tg where

yt is a n � 1 vector given by yt = (y1t; : : : ; ynt)0 and xt is a countably dimensioned m � 1 vector.

We will assume that zt has been demeaned. Note that yt is the set of variables of primary interest

and xt is of secondary interest used to explain yt. We consider a structural vector-autoregressive

(SVAR) model for yt as follows:

A(L)yt = �t

A(L) = A0 +A1L+ : : :+ApL
p (1)

where �t = (�1t; : : : ; �nt)0 is the vector of mean zero disturbances. We impose the following assump-

tion on the SVAR model in (1).

Assumption 1. (i) All values of w satisfying jA0 + A1w + : : : + Apw
pj = 0 lie outside the unit

circle.

(ii) A(L) satis�es the order condition for identifying the structural equation.

(iii) f�tg is ��mixing of size �r=(r � 2) with r > 2, and suptEj�
2(r+")
i;t j < 1 for some " > 0 and

for each i = 1; : : : ; n.

Assumptions 1(i) through 1(ii) are standard in the SVAR framework. Turning to Assumption

1(iii), we note that ��mixing is stronger than ��mixing. Nevertheless, we impose such a strong

condition because it is required to obtain an e¢ cient weight function for the Laplace type quantile

estimator, which will be explained in detail in Section 4. If we wish to obtain only a consistent

quantile estimator (not necessarily e¢ cient), then the ��mixing condition can be relaxed to the

��mixing condition. We also note that the mixing condition on �t does not necessarily imply

that yt is a mixing sequence as discussed in Andrews (1983). Instead, Assumption 1(iii) together
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with (i) indicates that fytg is near-epoch-dependent (NED) which is su¢ cient to obtain the desired

asymptotic properties of the e¢ cient quantile estimator as discussed in Section 4.

If the distribution of �t does not depend on the lags of yt, the SVAR model in (1) is the same

as the conventionally-used SVAR, where an intervention to one of the structural shocks will a¤ect

the future dynamics of yt only through its conditional mean, which will produce the conventional

impulse response function. In such a case, the e¤ect of the intervention on other parts (i.e.,

quantiles) of the conditional distribution can be straightforwardly inferred from the mean e¤ect

because all the impulse response functions at di¤erent quantiles will be parallel to the conventional

mean impulse response function. However, Assumption 1 does not eliminate the possibility that

the structural error term �t can depend on lagged yt. Such a possibility implies that an economic

shock can a¤ect not only the conditional mean, but also the whole distribution of yt in a non-trivial

manner. Since the e¤ect on the conditional mean function is obviously captured by the conventional

impulse response function, the objective of this paper is to develop a new method that can capture

the e¤ect on the conditional quantile function of yt.

The relationship between the two e¤ects mentioned above can be easily seen by decomposing

yi;t into two parts, the conditional mean and its deviation from the conditional mean, as follows:

yi;t = E(yi;tjFt�s) + ui;tjt�s; (2)

where ui;tjt�s = yit � E(yi;tjFt�s) and Ft�s is the �-algebra generated by fz0t�s; z0t�s�1:::g. Simply

speaking, Ft�s is the collection of information available at time t � s. As stated before, the

conditional mean part in (2) is dealt with by the conventional impulse response function and the

remaining part (ui;tjt�s) has been left largely unexplained in the literature.

Given that our main methodology is based on quantile models, we �rst de�ne Fi;tjt�s(y) =

P [yi;t � yjFt�s] which is the cumulative distribution function of yi;t conditional on Ft�s with

the corresponding conditional density function fi;tjt�s(y). Given a quantile index � 2 (0; 1), the
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�th�quantile of the distribution of yi;t conditional on the information set Ft�s, denoted q��i;t;s, is

de�ned as

q��i;t;s := inf
v2R

fv : Fi;tjt�s(v) � �g;

and if Fi;tjt�s is strictly increasing,

q��i;t;s = F�1i;tjt�s(�):

In other words, the conditional quantile q��i;t;s is such that the conditional probability that yi;t is

smaller than q��i;t;s is �.
3

Whenever it is convenient, the �th�quantile of the distribution of yi;t conditional on the in-

formation set Ft�s is also denoted by Q�(yi;tjFt�s) because of its analogy with the corresponding

conditional expectation E(yi;tjFt�s). If we restrict our attention to a linear quantile model such

that q��i;t;s = z0t�s�i;�, the quantile model can be rewritten in a more familiar formulation as:

yi;t = z0t�s�i;� + "
�
i;t; (3)

where "�i;t satis�es the quantile restriction P ["
�
i;t < 0jFt�s] = �.

The source of heteroscedastic quantile e¤ect (i.e., �i;� varying with �) can come from either

heteroscedastic errors or non-separable errors. For example, if we start with yi;t = z0t�s�i + "�i;t

where �i is constant and "
�
i;t = (z

0
t�s)�t where �t is independent and identically distributed, then

it can be shown that �i;� = �i + z0t�sq
�
�;t;s where q

�
�;t;s is the �

th�quantile of �t conditional on

Ft�s. The following assumption imposes that the conditional quantile function q��i;t;s has a form of

autoregression.

3Rather than focusing on a speci�c quantile index � 2 (0; 1), we can consider a set of multiple quantile indexes

�k with k = 1; 2; :::;m in which these m quantile indexes are ordered such that 0 < �1 < :::; < �m < 1. Our theory

is su¢ ciently general enough to accommodate such multiple quantile indexes jointly. However, we present the theory

in the text using only a speci�c quantile index � for clarity.
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Assumption 2. (i) Fi;tjt�s(y); s = 1; 2; :::; h, i = 1; : : : ; n is continuous and positive with the

density function fi;tjt�s(y) which is �nite and continuous for all y 2 R.

(ii) For a given �nite integer p, there exist real n � 1 vectors ��i;s;j and m � 1 vectors ���i;s for

s = 1; 2; :::; h; i = 1; 2; :::; n and t = 1; 2; :::; T such that we have the following

q��i;t;s =

p�1X
j=0

��0i;s;jyt�s�j + �
��0
i;s xt�s: (4)

(iii) If xt is weakly exogenous, it is ��mixing with the same size and moment condition as �t.

Otherwise xt is such that
@mxt�s
@�i;s;j

m ; m = 1; 2, exists and is NED on �t with E[k @
mxt�s

@�i;s;j
m k2] <1 and

NED numbers �(s) = O(s��):

We note that the number of lagged terms in (4) is set to be the same as the number of lagged

terms in (1) to simplify the notation. Our theory is general enough to accommodate di¤erent

numbers of lagged terms in both speci�cations if desired. De�ning q��t;s := (q
��
1;t;s; q

��
2;t;s; :::; q

��
n;t;s)

0, we

note that the expression in (4) can be expressed as a vector form:

q��t;s = �
��
s (L)yt�s +	

��
s xt�s; (5)

where

���s (L) = �
��
s;0 + �

��
s;1L+ : : :+ �

��
s;p�1L

p�1

���s;j =

26666664
��01;s;j

:

��0n;s;j

37777775 ;

	��s =

26666664
���01;s

:

���0n;s

37777775 :
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Note that Assumption 2 requires the quantile function to be linear for each prediction horizon

s = 1; 2; :::; h. The reason why we need to impose this condition is that, unlike the conditional mean

equation in which the conditional expectation of yi;t+s given Ft (i.e., E(yi;t+sjFt)) can be obtained

from E(yi;t+1jFt) in a recursive manner, Q�(yi;t+sjFt) cannot be obtained from Q�(yi;t+1jFt) re-

cursively.4 Thus, di¤erent models are required for each prediction horizon s. This assumption may

be considered rather restrictive and we discuss how such an assumption can be relaxed in the next

section to deal with this criticism. Our assumption for xt is weak enough to cover a broad set of

variables which includes the lags of q��t;s : In that case, (5) is a generalization of CAViaR of Engle

and Manganelli (2004) and MQCAViaR of White et al. (2014, 2015), which are known to cover

nonlinear structures including the ARCH e¤ect.

Consider, for example, the SVAR process in (1) with heteroscedastic errors where �t is given by

�t = �t�
�
t ; (6)

�t = �ni=1i;t;

i;t = i0 + 
i
1
0yt�1 + 

i
2
0yt�2 + : : :+ 

i
p
0yt�p;

where ��t � IID(0; In); � denotes the matrix direct sum, i0 is a positive real number, and ij is an

n � 1 real vector for j = 1; 2; :::; p. To show that the example process in (6) satis�es Assumption

2, we let p = 1 for the sake of simplicity. Let In denote the n� n identity matrix. Then, one can

easily show that

yt = �t;syt�s + u
�
t;s; (7)

4Such a recursion for the expectation function is possible thanks to the linearity of the expectation operator, which

does not hold for the quantile operator.
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where

�t;s =
s�1Y
i=0

(�A�10 A1 +A
�1
0 �t�i1) for s = 1; 2; :::; h;

�t = �ni=1��i;t;

u�t;s =

s�1X
i=0

�t;i�t�i0;

�t;0 = In;

0 = (10; : : : ; 
n
0 )
0;

1 = (11; : : : ; 
n
1 )
0:

Note that Q�(yi;tjFt�s) is the solution to the following equation:

P [yi;t � Q�(yi;tjFt�s)jFt�s] = �: (8)

If E[ �(u
�
t;s;i)] = 0 where  �(u

�
t;s;i) = �� 1[u�t;s;i�0] and u

�
t;s;i is the i

th element of u�t;s, there exists

� such that

Q�(ytjFt�1) = �yt�1;

which implies that Assumption 2 is satis�ed for the SVAR process with heteroscedastic errors in

(6) for s = 1. Alternatively, one can show that Assumption 2 is also satis�ed if 11 = 21 and �
�
t is

normally distributed for s = 1. We note that we need some additional conditions for the existence

of � for s > 1:

The quantile function Q�(yi;tjFt�s) can have some alternative representation which can be

derived using ui;tjt�s in (2). If we denote the conditional quantile of ui;tjt�s by either q��u;i;t;s or

Q�(ui;tjt�sjFt�s), there is one-to-one correspondence between Q�(yi;tjFt�s) and Q�(ui;tjt�sjFt�s),

which is given by Q�(yi;tjFt�s) = E(yi;tjFt�s) + Q�(ui;tjt�sjFt�s) so that the equation in (5) can

be replaced by

q��u;t;s = �
��
u;s(L)yt�s +	

��
s xt�s; (9)
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where q��u;t;s = (q
��
u;1;t;s; q

��
u;2;t;s; :::; q

��
u;n;t;s)

0; ���u;s(L) = �
��
s (L)�As(L) andAs(L) is such that E(ytjFt�s) =

As(L)yt�s.

3 Quantile Impulse Response

One of the main strengths of using a VAR is that it allows us to examine the dynamic response of a

variable to an identi�ed economic shock using impulse response functions, which are conventionally

calculated using a moving average transformation of (1) as:

yt = C(L)�t;

C(L) = C0 + C1L+ C2L
2 + : : : : (10)

If �t is independent and identically distributed, then the response of yi;t+s to a shock in �jt is simply

@yi;t+s
@�jt

= Cijs where Cijs is the (i; j) element of Cs. It is well known that the function
@yi;t+s
@�jt

= Cijs

measures the e¤ect of a shock on the conditional mean function of yi;t+s so that it will be referred

to as the canonical mean impulse response function (MIRF). However, the dependency of the

distribution of �t+i (i = 1; : : : ; s) on yt imposed by Assumption 2 implies that a shock can change

not only the conditional mean, but also the whole conditional distribution of yt+s in a non-trivial

manner.

In the example in (6) where the structural shock �t is unexpected but the size of �t is related

to the past (�t) , the change in �t+s with respect to a unit change in �t is given by
@�t+s
@�
0
t

��t+s: Then

the impulse response function is obtained as

@yt+s
@�0t

= C0
@�t+s
@�0t

��t+s + C1
@�t+s�1
@�0t

��t+s�1 + :::+ Cs�1
@�t+1
@�0t

��t+1 + Cs

which is due to the fact that �t+s; :::;�t+1 are functions of �t as speci�ed in (6). We note that

@yt+s
@�0t

depends on unknown future error terms ��t+j ; j = 1; : : : ; s. In other words, the entire future
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distribution of yt+s is a¤ected by a shock to �t. We capture such a response of the entire distribution

using the changes in its conditional quantiles.

To capture the non-trivial changes in conditional quantiles, we propose two concepts of quantile

impulse response functions denoted by QIRF�1 (s) and QIRF
�
2 (s), respectively. Analogous to the

MIRF, the �rst one QIRF�1 (s) is de�ned as

QIRF�1 (s) =
@q��t+s;s
@�0t

;

where s is the response horizon; s = 1; 2; :::; h.

Using the quantile speci�cation in (5), one can easily show that

QIRF�1 (s) = �
��
s;0C0 +	

��
s

@xt
@�0t

: (11)

AlthoughQIRF�1 (s) is intuitively appealing due to its analogy to the MIRF, implementingQIRF
�
1 (s)

can be computationally demanding. Its computation is similar to the local projection method in

that, due to the nonexistence of the Wald representation in the quantile series, one needs a di¤erent

quantile equation for each response horizon s = 1; :::; h as de�ned in Assumption 2. Thus its im-

plementation can be computationally intensive for large values of n since quantile estimation must

be carried out at each horizon s = 1; :::; h and each variable i = 1; : : : ; n. Moreover, QIRF�1 (s)

requires a strong condition such as Assumption 2(i) to hold for each response horizon s = 1; :::; h,

which is often too restrictive. The second concept of QIRF denoted by QIRF�2 (s) is designed to

weaken such strong assumption and restrictions, which is de�ned as follows:

QIRF�2 (s) = E

�
@q��t+s;1
@�0t

jFt
�
; (12)

=

pX
i=1

���1;iE

�
@yt+s�i�1

@�0t
jFt
�
+	��1 E

�
@xt+s�1
@�0t

jFt
�
;

where E
h
@yt+s�i
@�0t

jFt
i
is by de�nition the MIRF.

As is evident in (12), QIRF�2 (s) is based on the quantile at t+s conditional on the information

set at t+s�1. Intuitively speaking, at each s; QRF�2 (s) captures the change in distribution occurring
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at t + s whereas QIRF�1 (s) tracks the aggregate change in distribution between t + 1 and t + s

for each s. For this reason, QIRF�2 (s) does not require strong conditions such as Assumption 2(i)

required for QIRF�1 (s); and does not need to be carried out for each response horizon s = 1; :::; h;

that is, a single estimation of q��t;1 is su¢ cient. The concept of QIRF
�
2 (s) is analoguous to that

of the generalized impulse response function of Pesaran and Shin (1998) in that both methods

compute the expectation of the change of a variable after a shock.

As noted in the previous section, the concept of QIRF is able to capture the so-called asymmetric

response of a variable to economic shocks. For example, consider the quantile impulse response

of yi;t+s (s = 1; 2; :::; h) when an impulse is given to �jt. A positive monetary policy shock can

make yi;t+s smaller in dispersive order in the sense of Shaked and Shanthikumar (2006), while a

negative shock can make it larger. That is, a positive shock shrinks the distribution of yi;t+s given

Ft or Ft+s�1, while a negative shock can increase the spread of the whole conditional distribution

possibly in an asymmetric manner. Hence, the QIRF is not necessarily symmetric whereas the

conventional MIRF is symmetric even in this example. For the sake of illustration, we display an

example graphically in Figure 1. In each sub-�gure, the boundaries of di¤erent shades represent

0.2, 0.4, 0.6, and 0.8 quantiles from left to right, respectively. Figure 1(b) shows that a positive

shock reduces the spread of the distribution after the mean shifting. For example, the distance

between 0:2th and 0:8th quantiles changes from 1.7 to 0.8. On the other hand, a negative shock

increases the spread of the distribution so that the distance becomes 2.6 as shown in Figure 1(d).

To examine a possible asymmetric pattern in QIRF, we conduct Monte Carlo simulations using

a bivariate VAR(1) model with heteroscedastic errors as in (1) and (6) with yt = (y1;t; y2;t)
0 and

�t = (�1;t; �2;t)
0. The structural identi�cation condition is such that A0 is a lower triangular matrix

speci�ed as A0 =

0BB@ 1 0

�0:5 1

1CCA. The coe¢ cient matrices A1 and �1 for the bivariate VAR(1) are
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set to A1 =

0BB@0:4 0:2

0:2 0:3

1CCA, and �1 =
0BB@0:3 �0:2

0:2 0:3

1CCA, respectively. . Once yt�s are generated through
these speci�cations, we compute QIRF�2 (s) for �ve quantile indexes (� = 0:1; 0:3; 0:5; 0:7; and

0:9). The results are shown in Figure 2. In each �gure, there are �ve lines for those selected quantile

indexes and each line traces how the corresponding quantile response changes after a shock. When

QIRF�2 (s) for �ve di¤erent values of � is graphed against s, all the �ve lines should start at the

same point (i.e., zero) when s = 0 because there is no shock when s = 0. However, just for easing the

comparison of the �ve lines, the initial starting points are separated based on the corresponding

quantiles of the standard normal distribution. For example, QIRF�=0:12 (s) starts at the 0.1th

quantile of the standard normal distribution. It is also noted that each quantile line converges

to its starting level when the e¤ect of the shocks disappears. If the distance between the �ve

lines becomes wider after a shock, it implies that the shock increases the spread of the conditional

distribution, and vice versa. As shown in Figure 2, the spread of the conditional distribution of

y1;t decreases after a positive shock in �2;t, while a negative shock in �2;t increases the dispersion

of the conditional distribution. The spread of the conditional distribution of y2;t tends to move in

the opposite direction.

4 Estimation

To compute the quantile impulse response functions discussed in the previous section, we need to

estimate both the mean parameters in (1) and the quantile parameters in (4). Since the conditional

mean coe¢ cient matrix A(L) can be estimated using any existing consistent estimation method

under Assumption 1, this section focuses on quantile estimation. For a particular quantile index

� and a speci�c horizon s, the set of coe¢ cients to be estimated is ���s := (���1;s
0; :::; ���n;s

0)0 where
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���i;s = (
��
i;s;1

0; : : : ; ��i;s;p
0; ���i;s

0)0 and ��i;s;j , �
��
i;s are given in (4).

5 We estimate ���s using a correctly

speci�ed model. Let � be the relevant compact parameter space and we assume that there exists

a sequence of n� 1 vector functions fq�t;s(�) : � 2 �g such that for each s and t; the function q�t;s(�)

for � 2 � is speci�ed as follows:

q�t;s(�) =

pX
j=0

��s;jyt�s�j +	
�
s xt�s; (13)

where � is de�ned analogously with ���s but using ��s;j and 	
�
s which have the same dimensions as

���s;j and 	
��
s in (5), respectively.

Next, we provide the correct speci�cation condition; that is, the model in (13) is correctly

speci�ed which means that the true parameter vector ���s belongs to the parameter space �.

Assumption 3. The true parameter vector ���s belongs to the interior of a compact parameter

space � such that for each s and t, we have the following:

q��t;s = q�t;s(�
��
s ): (14)

For notational convenience, we suppress the dependency on s hereafter unless it is required to

clarify the notations. For example, q�t;s(�) is denoted as q
�
t (�). Let r�q

�
t be the gradient of q

�
t (�).

If xt is weakly exogenous, r�q
�
t is simply In 
 wt where wt = (y

0
t�s; y

0
t�s�1; : : : ; y

0
t�s�(p�1); x

0
t�s)

0.

De�ne the n� 1 vector ��t (�) where the ith element of ��t (�) is 1fyi;t<q�i;t;s(�)g � �. Then, it can be

shown that the following moment condition is satis�ed.

E[r�q
��0
t 
t�

��
t ] = 0; (15)

where r�q
��
t = r�q

�
t (�

��
s ), �

��
t = ��t (�

��
s ), and 
t 2 Ft�s is a n � n non-singular positive def-

inite matrix of the weight function. In this paper we consider estimators that make the sample
5Computing QIRF�2 (s) requires n equations to be estimated while QIRF

�
1 (s) needs nh equations. The latter can

be computationally intensive.
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counterpart of (15) close to zero; that is, estimators satisfying the following condition

mT (�̂
�

T ) =
1

T

TX
t=1

r�q
�0
t (�̂

�

T )
t�
�
t (�̂

�

T ) = op(
1p
T
): (16)

Existing quantile estimators can be considered as special cases of the estimator �̂
�

T obtained

from (16) with di¤erent choices of 
t. For example, in cross-section models with iid variables, the

condition in (16) can be viewed as the �rst order condition of the multivariate quantile regression

estimator of Chaudhuri (1996) and the univariate median regression estimator of Zhao (2001) if


t = In and 
t = fi;tjt�s(q
��
i;t ), respectively. Using 
t = FtT

�1
t where Ft = �ni=1fi;tjt�s(q��i;t )

and Tt = E[���t �
��0
t ] will result in the e¢ cient seemingly unrelated quantile estimator of Jun and

Pinske (2009). In time-series models with non-iid variables, using the identity matrix for 
t is

equivalent to the case of the QMLE of White et al. (2015). We also note that the univariate

e¢ cient semiparametric estimator of Komunjer and Vuong (2010) is considered as the univariate

version of Jun and Pinske (2009).

The following proposition whose proof is based on the idea of Huber (1967) provides the as-

ymptotic properties of the estimator de�ned in (16).

Proposition 1. Suppose that (i) 
t is known and (ii) an estimator �̂
�

T satis�es (16). Under

Assumptions 1 through 3,

�̂
�

T
p! ���;

p
T (�̂

�

T � ���)
d! N(0; Q�1V Q�1);

where Q = E[r�q
��
t
0
tFtr�q

��
t ], V = E[r�q

��
t
0
tTt
tr�q

��
t ], Ft = �ni=1fi;tjt�s(q��i;t ) and Tt =

E[���t �
��0
t ].

All the technical proofs are provided in the Mathematical Appendix A. The e¢ ciency of the

estimator �̂
�

T depends on the choice of 
t. If 
t is a diagonal matrix such as the identity matrix,
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the estimator is basically equivalent to what is obtained by estimating each equation separately

by regression quantile. In that case, we lose e¢ ciency, analogously to the SUR set-up in OLS

regression, if the elements of ���t are correlated. As noted in Section 2, our model eventually

considers multiple quantiles, although our notation uses a single index � for clear presentation.

In such a general multi-quantile case, the vector ���t contains the check functions of the di¤erent

quantile levels of the same yi;t, which is likely to cause high correlation between the elements of

���t .

Since e¢ ciency loss caused by such correlation can be substantial, one can consider the choice of

Jun and Pinkse (2009) by setting 
t = FtT
�1
t where Ft = �ni=1fi;tjt�s(q��i;t ) and Tt = E[��t�

�0
t ]. Such

a choice of 
t denoted as 
Et can produce an e¢ cient estimator. However, the estimation procedure

of Jun and Pinkse (2009) has potentially poor �nite sample performance and is not applicable to

serially dependent series such as ours. Hence, we suggest using a direct GMM estimation method

with kernel density estimators. The estimation procedure can be carried out in two steps. The �rst

step is an initial estimation stage to obtain a preliminary proxy estimator for 
Et . In the �rst step,

the true parameter can be estimated by any consistent estimation method such as single equation-

by-equation quantile regression or QMLE depending on the property of xt. The conditional density

fi;tjt�s(�) = fi;t(�jwt) can be estimated using the traditional methods such as Powel (1984) and

White et al. (2015). Or it can be directly estimated using the data set by the standard kernel

method as follows :

f̂i;t(yijw) =
1[bT<f̂(w)]f̂(yi; w)

f̂(w)
;

where
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f̂(yi; w) =
1

Thk+1T

TX
t=1

K1(
yi � yi;t
hT

)Kk(
w � wt
hT

); (17)

f̂(w) =
1

ThkT

TX
t=1

Kk(
w � wt
hT

):

Note that Ki(�) is a kernel with � 2 Ri, , hT is a positive bandwidth, k is the dimension of wt and bT

is a sequence of positive constants designed to eliminate the aberrant behavior of kernel estimators

for the conditional distribution (density) in regions where f̂(w) is small. The proxy estimator of


Et , denoted by 
̂
E
t , is computed using the �rst step estimator �̂

�
t � ��t (

~�
�
T ) and f̂i;t(yijw) where

~�
�
T is any �rst-stage consistent estimator for �

��.

The second step for the GMM estimation method is to estimate ��� based on (16) using 
̂Et .

Speci�cally, we obtain the GMM estimator of ��� by minimizing the following objective function:

LT = TmE
T (�)

0
h
Q̂E
i�1

mE
T (�); (18)

wheremE
T (�) =

1
T

PT
t=1r�q

�0
t (�)
̂

E
t �

�
t (�), and Q̂

E is a consistent estimator ofQE = V ar(
p
TmE

T (�
�)) =

E[r�q
��0
t FtT

�1
t Ftr�q

��
t ].

A typical GMM estimation method often leads to computational di¢ culties because the check

function ��t (�) generally yields too many local non-convex regions. To tackle such a problem, we

employ the Laplace-type Estimator (LTE) of Chernozhukov and Hong (2003) which is relatively

easy to compute and is shown to circumvent the curse of dimensionality which our VAR set-up

might have. This method is basically equivalent to the Markov Chain Monte Carlo (MCMC)

approach but uses the quasi-posterior distribution function which is de�ned as

pT =
eLT �(�)R
eLT �(�)d�

; (19)

where �(�) is a prior distribution function. The detailed estimation procedure to obtain the LTE

is explained in Mathematical Appendix B.
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Let �̂
E
be the LTE which minimizes (18). Note that Proposition 1 cannot be directly used

to obtain the asymptotic distribution of �̂
E
because the estimated weight function 
̂Et is used

instead of the true e¢ cient weight function 
Et . To obtain the asymptotic property of �̂
E
, we need

additional assumptions for the density estimator. The assumption for the kernel estimator (17) is

as follows.

Assumption 4. (i) sup�2Ri jKi(�)j � C0 <1,
R
�Ki(�)d� = 0,

R
�2Ki(�)d� <1, i = 1; k.

(ii) Ki(�) has a Fourier transform �i(�) that is absolutely integrable.

(iii) K1(�) is continuously di¤erentiable on R with derivative satisfying supw2R jK 0
1(w)j <1.

(iv) hT ! 0, Thk+1T !1, and (TpTh3T )�1 ! 0:

While using other density estimation methods, similar assumptions such as Assumptions 5 and

7 of White et al. (2015) are needed. The following proposition provides the asymptotic distribution

of the LTE �̂
E
together with its asymptotic variance-covariance matrix.

Proposition 2. Suppose that (i) (yt;r�q
�
t ) is strictly stationary, and (ii) bTT

�
2�+1h

k+ 1
2�+1

T ! 1,

and bT =(T 1=4hT )!1 where bT = o(T
� 1
4� ), � = limm!1

� ln
P1
i=m+1 k ik
lnm ; and f ig is the moving

average coe¢ cient of (1). Under Assumptions 1 through 4, the asymptotic distribution of �̂
E
is

given by

p
T (�̂

E � ���) =) N(0; QE
�1
);

where QE = E[r�q
��0
t FtT

�1
t Ftr�q

��
t ].

We note thatQE can be easily estimated using its sample counterpart Q̂E = 1
T

PT
t=1r�q

0
tF̂tT̂

�1
t F̂tr�q

�
t ,

and T̂�1t = 1
T

PT
t=1 �̂t�̂

0
t.
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5 Empirical Application

In this section, we apply the proposed method to demonstrate how we can explore the e¤ects of

a monetary policy shock in greater detail using the QIRF . Although studying such an e¤ect can

provide signi�cant insights into the e¤ects of monetary policy, most empirical work, inside and

outside of central banks, has focused on the average e¤ect with the assumption that contractionary

and expansionary monetary policy shocks have the same e¤ect with the opposite sign. The main

purpose of our analysis is to demonstrate how the generalization of a traditional mean-based analysis

to include QIRF s can usefully trace the e¤ects over the whole distribution using our proposed

method - illustrating the asymmetric response to policy shocks in each tail and measuring the

change in the dispersion of the distributions after contractionary or expansionary monetary policy

shocks.6

To keep the demonstration simple, the baseline VAR model is

A(L)yt = �t; (20)

A(L) = A0 +A1L+ : : :+ApL
p (21)

where yt = (xt; pt; Rt)
0
taking xt as employment growth, pt as the in�ation rate, and Rt as a

narrative based monetary policy variable derived by Romer and Romer (2004). The identifying

assumption for the VAR model is that A0 is lower triangular, which implies that policy shocks

respond to aggregate employment growth and in�ation, but have no contemporaneous impact on

them. That is, any contemporaneous correlations between VAR disturbance to the policy variable

and the indicator of aggregate production is assumed to re�ect causation from other variables to

the policy variable, and not the other way around.
6As a related issue, central banks have acknowledged the limitation of generating mean-based forecasting, and

there has been an increasing attention toward density-based forecasting which can be produced by multiple regression

quantiles.
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The data used in estimation are monthly observations and the sample period is from January

1973 to December 2000.7 We estimate the VAR and provide quantile impulse response functions,

QIRF�2 to illustrate our new methods in response to monetary policy shocks.

Although our model is simple in its structure, it is well known that a VAR model such as (20)

may still display a �price puzzle�- a rise in the aggregate price level in response to a contractionary

monetary policy shock that contradicts mainstream theory.8 Various approaches are suggested to

deal with the price puzzle, mainly focusing on isolating monetary policy shocks from the policy

response to forecasts. These approaches include using a new measure of monetary policy (Romer

and Romer (2004), Keating et al. (2014)), adding forecasts or a proxy of forecasts (Bernanke et al.

(2005), Bhuiyan (2014)). This paper uses the narrative measure of monetary policy shocks from

Romer and Romer (2004), that is relatively free of endogenous and anticipatory movements.

Our VAR model includes total non-farm employment growth, consumer price in�ation, and

the monetary shock measure based on Romer and Romer (2004), which is illustrated in Figure

3. The shocks implied by the narrative policy measure comove very closely with changes in the

actual federal funds rate - for example both show negative shocks in periods of recession - but there

are inevitably discrepancies in some periods such as 1977-1978 and 1991-1992, which may indicate

that the Federal Reserve raises (decreases) the interest rate by a lesser (greater) amount than it

normally would use, given its forecast of rapid expansion (recession). This does not prevent us from

7This avoids complications with the dotcom crisis, which occurred in 2001, to which the Federal Reserve responded

by cutting the Fed funds rate eleven times and the discount rate twelve times in 2001.
8A traditional interpretation of the puzzle is that the federal reserve board has better in�ation forecasts so that

changes in the interest rate partly re�ect policy response to in�ation pressures. In recent decades, there have been

many attempts to tackle the problem by eliminating the expected changes in the policy variable. A conventional

way is to add a commodity price as a measure of information variable; see Sims (1992), Christiano et al. (1996). In

other e¤orts, Giordani (2004) propose to use a GDP gap instead of output growth while Bernanke and Mihov (1998)

suggest a linear combination of total reserves, non-borrowed reserves, and the federal funds rate as policy shocks.
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using this model as a demonstration tool to show the usefulness of the quantile impulse response

functions, QIRF�2 .

Let us suppose, for the purpose of illustration, that the central bank would like to know the e¤ect

of a contractionary monetary policy on employment growth and in�ation. When we estimate the

model we can see that it has similar responses to the original Romer and Romer (2004) model, based

on the plots the mean impulse response functions (MIRFs) for employment growth (left panel), and

in�ation (right panel) in Figure 4. The e¤ect of a monetary contraction (interest rates rise by 100

basis points) initially leads to an increase in employment growth, but after a few quarters, results in

a negative response of employment growth as expected. The e¤ect on in�ation is more variable, but

the e¤ect is again negative. This is the information that a regular (MIRF ) impulse response from

a simple VAR model of Romer and Romer (2004) type would generate, and based this information,

the central bank would infer the e¤ect of tightening the policy on employment growth and in�ation.

We now compare these results with the quantile impulse response functions, QIRF�2 . To do

this, we will demonstrate the additional information that is available by reporting the deviations of

the quantile estimates around the mean, that is, QIRF�2 �MIRF in two ways, which we explain

in sequence below.

First, we show that the impulse response functions for di¤erent quantiles often di¤ers signi�-

cantly from theMIRF , and not in a uniform way. Consider Figure 5 for employment growth under

a contractionary (100 basis point) monetary policy shock. The employment growth at � = 0:1 and

0:3 increases signi�cantly more thanMIRF after initial �uctuations, and then returns to the vicin-

ity of zero. On the contrary, the changes at � = 0:9 and 0:7 show the movement in the opposite

direction initially, and sharply increases more than MIRF , reaching maximum points about 0.5

and 0.2, respectively for � = 0:9 and 0:7. Here, we can identify two distinct patterns. One pattern

is that QIRF�2 �MIRF increases (taking positive values) for low quantiles, but decreases (taking
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negative values) for high quantiles. The other pattern is that QIRF�2 �MIRF takes positive values

for both low and high quantiles.

The mean impulse response functionMIRF can be interpreted as the change in the conditional

expectation function caused by an external shock. Notationally, MIRF = CES�CENS where

CES is the conditional expectation with shock, while CENS is the conditional expectation with no

shock. Analogously, the sample kind of interpretation can be given to QIRF�2 ; that is, QIRF
�
2 =

CQS��CQNS� where CQS� is the conditional �
th-quantile with shock while CQNS� is the conditional

�th-quantile with no shock. Hence, the �rst pattern in Figure 5 indicates that, for example with

� = 0:1; 0:9, QIRF�=0:12 > MIRF and MIRF > QIRF�=0:92 (when s is very small) which implies

that CQS�=0:1�CQNS�=0:1 > CQS�=0:9�CQNS�=0:9. Rearranging this inequality, one can obtain that

CQNS�=0:9�CQNS�=0:1 > CQS�=0:9�CQS�=0:1. The �rst term CQNS�=0:9�CQNS�=0:1 is the quantile distance

(or range) between � = 0:1 and � = 0:9 of the conditional distribution before the shock, whereas

CQS�=0:9 � CQS�=0:1 is the corresponding distance of the conditional distribution after the shock.
9

Hence, the dispersion of the growth distribution tends to shrink after the shock. The same kind of

calculation can be carried out for the second pattern which indicates that, for slightly higher values

of s, the shock tends to make the growth distribution skewed to the right.

Figure 6 shows how the in�ation distribution reacts to the same magnitude of contractionary

monetary policy shock. It can be easily seen QIRF�2 � MIRF is di¤erent from zero for some

values of s. Based on the empirical evidence indicated in Figures 5 and 6, it would be misleading

in this case for the central bank to assume that the e¤ects of contractionary monetary policy on

employment growth or in�ation correspond at all points on the distribution to the MIRF because

Figures 5 and 6 show they do not. By consulting the QIRF�2 or by comparing the response using

the di¤erence QIRF�2 �MIRF the central bank could observe di¤erences from the MIRF while

9 If � = 0:25, then CQ� � CQ1�� becomes the well-known interquartile range.
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setting monetary policy.

Second, the di¤erences in the responses at the upper and lower tails of the distribution can be

illustrated in a single �gure. Figure 7 presents QIRF�2 �MIRF for � = 0:1; 0:3; 0:7; 0:9 in one

graph. We use the same convention as used in Figure 2. That is, all the four lines should start at

the same point (i.e., zero), but the initial starting points are separated based on the quantiles of

the normal distribution as in Figure 2. Each starting point is indicated by a dotted line. Hence, for

example, if QIRF�2 �MIRF becomes lower than the dotted line, it means the di¤erence becomes

negative. We present this graph for four scenarios: in the upper row we have employment growth

under contractionary monetary policy (left upper panel) and expansionary policy (right upper

panel), and in the lower row, we have the equivalents for in�ation.

Under contractionary policy, our previous observations can be easily re-con�rmed in the left

panel of Figure 7. The impact of an expansionary monetary policy shock is shown in the right

panel of Figure 7. It shows that the conditional quantile range of responses in employment growth

expands in a way that is fairly similar (in this case) with the contraction after a tightening of

monetary policy (left panel). It is not necessarily the case that this kind of symmetric response

will occur, and our deviations in QIRF�2 �MIRF can provide evidence of asymmetry between

tightening and expansionary monetary policy shocks. The same kind of analysis can be undertaken

for in�ation.

These illustrations show that the QIRF�2 developed in this paper provides important infor-

mation on the di¤erences in the impulse responses at points on the distribution away from the

conditional mean. They show the range of distributional responses, the extent to which the con-

ditional quantile range is widening or narrowing, and the degree of asymmetry in the e¤ects of

monetary policy shocks, which might otherwise be assumed (incorrectly, in this case) to be identi-

cal to theMIRF . It illustrates very clearly that a central bank can be more consistent in its use of
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distributional information for the formulation of monetary policy, as well as for the communication

of monetary policy.

6 Conclusion

Central banks have made use of past forecast errors or split normal densities of forecasts in order to

convey the uncertainty around in�ation projections for more than two decades. However, they still

rely on conditional mean impulse response functions from models used to form monetary policy

decisions. In this paper, we present a new and proper impulse response analysis in quantile models

that ensures that the advantages of distributional information are conferred on models used for

policy purposes. Our paper also resolves some restrictions in the pseudo quantile impulse response

function proposed by White et al. (2015). Using a structural vector autoregression (SVAR) in the

conditional mean set-up, which is used to identify a structural shock, we permit an intervention into

the structural shock to a¤ect the entire conditional distribution, from which we derive a �quantile

impulse response function (QIRF ).�This allows us to observe the e¤ect of the shock on the entire

conditional distribution of the observable structural variable via any changes to the breadth of the

distribution under the shock, which measures a form of uncertainty and any asymmetry in the

responses to positive and negative shocks. None of these advantages are available using impulse

responses from the conditional mean function. Therefore, our methods provide researchers and

policy makers with a broader perspective on the dynamics of macroeconomic variables following a

shock. The new methods are applied to US monetary policy using the VAR model proposed by

Romer and Romer (2004). The results demonstrate the range of distributional responses, the extent

to which the conditional quantile range is widening or narrowing and the degree of asymmetry in

the e¤ects of monetary policy shocks for tightening and expanding monetary policy.
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Mathematical Appendix A: Proofs

To prove Propositions 1 & 2, we need to prove the following lemma �rst.

Lemma 1. Suppose the model satis�es the conditions for Proposition 2, then for all i = 1; : : : ; n

sup
yi;w

jf̂(yijw)� f(yijw)j !p 0:

Proof of Lemma 1. Similar to the proof of Theorem 1 of Komunjer and Vuong (2010), the lemma

can be proved if

sup
yi;w

jD�
yi f̂(yijw)�D

�
yi
�f(yijw)j = Op

�
T
� �
2�+1h

�k��� 1
2�+1

T

�
+Op(hT ) (22)

where D�
yi f̂(�) and D

�
yi
�f(�) are �th derivative with respect to yi, �f(yijw) = f(yjw)�g(w), �g(w) =

1
T

PT
t=1 gt(w) and gt(�) is the marginal density of wt. (22) is a modi�cation of Lemma 4 of Komunjer

and Vuong (2010) so that the order is adjusted to a NED process case. We will prove � = 1 case

only. � = 0; 2 cases are straightforward from this as is Lemma 4 of Komunjer and Vuong (2010).

Using (17), the left hand side can be rewritten as

sup
(y;w)

1

ThT

TX
t=1

����K1(
y � yt
hT

)Kk(
w � wt
hT

)� ft(y; w)
���� =

sup
(y;w)

1

ThT

TX
t=1

����K1(
y � yt
hT

)Kk(
w � wt
hT

)� E[K1(
y � yt
hT

)Kk(
w � wt
hT

)]

����
+

����E[K1(
y � yt
hT

)Kk(
w � wt
hT

)]� E[ft(yjw)Kk(
w � wt
hT

)]

����+ ����E[ft(yjw)Kk(
w � wt
hT

)� ft(y; w)
����

The proofs of the second and the third term are equivalent to those of Lemma 4 of Komunjer

and Vuong (2010) which are Op(hT ) and Op(hkT ), respectively. Thus, we have only to show that the

�rst term is Op

�
T
� �
2�+1h

�k��� 1
2�+1

T

�
. Similar to (A.10) of Andrews (1995), this can be proved if

E[ sup
(h�hT ;y;w)

1

ThT

TX
t=1

����K1(
y � yt
hT

)Kk(
w � wt
h

)� E[K1(
y � yt
hT

)Kk(
w � wt
hT

)]

����] = Op

�
T
� �
2�+1h

�k��� 1
2�+1

T

�
(23)
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Using the Fourier inversion theorem such that Kk(
w�wt
hT

) =
R
exp(�iv0(w � wt)=hT�i(v)dv and

Assumption 4 (ii)

sup
(y;w)

����� 1

Thk+1T

TX
t=1

K1(
y � yt
hT

)Kk(
w � wt
hT

)� 1

Thk+1T

TX
t=1

E[K1(
y � yt
hT

)Kk(
w � wt
hT

)]

����� (24)

�
Z
sup
(y;w)

����� 1

ThkT

TX
t=1

�
K1(

y � yt
hT

)

Z
exp(�iv0(w � wt)� EfK1(

y � yt
hT

)

Z
exp(�iv0(w � wt)g

�
�i(h

k
T v)

����� dv
�
Z
sup
y

����� 1

ThkT

TX
t=1

�
K1(

y � yt
hT

)

Z
exp(iv0wt)� EfK1(

y � yt
hT

)

Z
exp(iv0wt)g

�
�i(h

k
T v)

����� dv
=

Z
sup
y

����� 1

ThkT

TX
t=1

��
K1(

y � yt
hT

) cos(v0wt)� E[K1(
y � yt
hT

) cos(v0wt)]

�������
+

����� 1

ThkT

TX
t=1

�
i(K1(

y � yt
hT

) sin(v0wt)� E[K1(
y � yt
hT

) sin(v0wt)])

�������i(hkT v)dv
(25)

Then, similar to (A.13) of Andrews (1995), equation (24) can be proved if there exist bounded

constants C�0 ; C
�
` , and C

�
2 such that

E[
1

T

TX
t=1

������K1(
y � yt
hT

) cos(v0wt)� E[K1(
y � yt
hT

) cos(v0wt)]

������ < T
� �
2�+1h

� 1
2�+1

T [C�0 + kvhT kC�1 + C�2 ] :

Let ymt and wmt be E[ytjF tt�m] and E[wtjF tt�m], respectively, where F t�;t�m is the ���eld generated

by (�t�m; : : : ; �t; x0t). Note that

K1(
y � yt
h

) cos(v0wt)� E[K1(
y � yt
h

) cos(v0wt)] =

�
K1(

y � yt
h

)�K1(
y � ymt
h

) cos(v0wt)

�
+

�
K1(

y � ymt
h

)fcos(v0wt)� cos(v0wmt )g
�
+

�
K1(

y � ymt
h

) cos(v0wmt )� E[K1(
y � ymt
h

) cos(v0wmt )]

�
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�
E[K1(

y � ymt
h

)fcos(v0wmt )� cos(v0wt)g]
�
+

�
E[fK1(

y � ymt
h

)�K1(
y � yt
h

)g cos(v0wt)]
�

= at + bt + ct + dt + et

(26)
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Assumption 1 (i) implies that there exists a sequence of absolutely summable f ig such that

yt = �y +
P1

i=1  i�t�i. Then,

sup
t
E[kyt � ymt k] = sup

t
E[k

1X
t=m+1

 i�t�ik] �
1X

t=m+1

k ikkV ar(�t�i)k]! Op(m
��) (27)

where � is as de�ned in the proposition. wt has the same property by Assumption 2(iii). Then,

1
T

P
Ejatj � C0M0T and 1

T

P
Ejetj � C0M0T for a bounded constant C0 and M0T = Op(h

�1
T m��)

because cos(�) � 1,ryK1(�) is bounded by construction, andK1(
y�yt
hT
)�K1(

y�ymt
hT

) = ryK1(
yt��y
hT
)(
yt�ymt
hT

) =

C0M0T . 1
T

P
Ejbtj � kvkC1M1T and 1

T

P
Ejdtj � kvkC1M1T for a bounded constant C1 and

M1T = Op(m
��) because K1(�) is bounded and cos(v0wt) � cos(v0wmt ) = sin(v0 �w)v0(wt � wmt ) �

kvkM1T . To show the convergence of 1
Th

P
E jctj, note that by Assumptions 1(iii) and 2(iii),

fymt ; wmt g is ��mixing with mixing coe¢ cient �(s �m) as de�ned in Assumption 1(iii). Then by

Corollary 14.5 of Davidson (1994), Cov(K1(
y�ymt
hT

)cos(v0wmt ); eKm
1t cos(v

0wmt )) < 4C
r
2�(jt�uj(r�2)=r)

for a bounded constant C2. Hence, nn V ar( 1T
PT

t=1
eKm
1t cos(v

0wmt )) � 8C2 1T
P
�(jt �mj)(r�2)=r �

C3
m
T for a constant C3 that depends on C2 and

1
T

P
�(jt�mj(r�2)=r, which indicates that 1T

P
Ejctj �

C2(
8C3m
T )1=2 for bounded constants C2 and C3. Consequently, by choosing m as the integer part of

T 1=(2�+1)h
�2=(2�+1)
T ,

1

T
E

�����
TX
t=1

K1(
y � yt
h

) cos(v0wt)� E[K1(
y � yt
h

) cos(v0wt)]

����� � C0M0T + kvkC1M1T + C2

�
8C3m

T

�1=2
= T

� �
2�+1h

� 1
2�+1

T [C�0 + kvhT kC�1 + C�2 ] (28)

for bounded constants C�0 ; C
�
1 ; C

�
2 . This completes the proof. �

Proof of Proposition 1. We �rst establish the consistency result. Letm(�) = 1
T

PT
t=1E[r�q

�0
t (�)
t�

�
t (�)].

Using triangle inequality

km(�̂�T )k � kmT (�̂
�

T )k+ sup
�2�

km(�)�mT (�)k (29)
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The �rst term is op(1) by (16). Note that since fymt ; wmt g is mixing, r�q
�
t (�)

0
t��t (�) is also mixing

with the same mixing coe¢ cients as fymt ; wmt g. Thus, we can apply the law of large numbers for

mixing sequence [Theorem 3.47 of White (2000)] so that kmT (�)�m(�)k = op(1) for all � 2 �. Then,

the second term is op(1) by Glivenko-cantelli Theorem, which completes the proof by Assumption

3.

Next, we prove the asymptotic normality of the proposed estimator. Since �̂
�

T satis�es the

asymptotic �rst order condition by (16), we can apply the proof of Theorem 2 of White et al.

(2015). Equations (15) through (19) if replacing r�q
�0
t by r�q

�0
t 
t still satis�es assumption of

White et al. (2015), denoted by WA1 through WA6. WA1 can be replaced by Assumptions 1 and 2

(iii) because WA1 is required to apply CLT for
p
TmT (�̂

�

T ) and the mixing property ofr�q
�0
t 
t from

the assumptions allow to apply appropriate central limit theorems for mixing processes. WA 2, 3,

and 4 are equivalent to Assumptions 2(i), (ii), and 3. WA5 (i) and (ii) are satis�ed by Assumptions

1(iii) and 2(iii). WA 5(iii) also follows from the same assumptions because 
t is �nite. Thus, we

skip the detailed proof. �

Proof of Proposition 2. We will prove the case while using the standard kernel estimator

in eq.(19). Using the other density estimator will be similar. The proposition can be proved

by showing that Assumptions for Theorem 2 of Chernozhukov and Hong (2003) (denoted CA1

to CA4) hold in our set-up. Assumption 3(ii) indicates CA1. Chernozhukov and Hong (2003)

state that a quadratic function with the prior in our set-up satis�es CA2. To prove CA3, note

that 1
T

PT
t=1r�q

�
t 
̂

E��t (�) =
1
T

PT
t=1r�q

�0
t (
̂

E � 
E)��t (�)+ 1
T

PT
t=1r�q

�0
t 


E��t (�) of which the

�rst term is op(1) by Lemma 1, Ekr�q
�
t k2 < 1, and the bounded ��t (�).Also, (yt;r�q

�
t ) are

NED of size � and it can be easily shown that r�q
�0
t 


E��t (�) satis�es Lipschitz condition. Thus,

by Theorem 17.12 of Davidson (1994) r�q
�0
t 


E��t (�) is also NED of size �, and, together with
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Lemma 1, Ekr�q
�
t k2 < 1, and min

h
4�+2
3�+1 ;

8r�9
7r�9

i
> 1, we can apply Theorem 20.19 of Davidson

(1994) to obtain that 1
T LT (�) �

1
T L

0
T (�) ! 0 in probability uniformly over �, where L0T (�) =

Tm0
T (�)

0Em0
T (�) and m

0
T (�) =

1
T

PT
t=1E[r�q

�0
t 


E��t (�)]. Also L
0
T (�) is positive except m

0
T (�) = 0

and by Assumption 3(ii), m0
T (�) = 0 if and only if � = �0. Thus, CA3 is satis�ed by Lemma 1 of

Chernozhukov and Hong (2003). To prove CA4, we verify that our set-up satis�es Conditions (i)

through (iii) of Lemma 2 of Chernozhukov and Hong (2003). LT and L0T are twice continuously

di¤erentiable, which satis�es (i). Since (yt;r�q
�
t ) is NED of size � on f�tg or on f�t; ztg, for any

vector � with �0� = 1, the sequence �0LE�1s mE
t (�

�) with LEs L
E0
s = QEs satis�es 24.6(a), (b), and

24.7(c�), (d�) of Davidson (1994) for a bounded constant cnt = c <1. Then, by Corollary 24.7 and

Theorem 25.6 of Davidson (1994), 1p
T
mE
t (�

�)) N(0; QEs ) which veri�es (ii). To check (iii), let us

de�ne

rT (�1; �2) =
km̂E(�1)� m̂E(�2)�rT (�1 � �2)k

k�1 � �2k
(30)

where rT =
1
T

P
rt, rt = [(q

�
t (�1) � q�t (�2))�t(�2)]=k�1 � �2k and �t(�) is the diagonal matrix of

which the diagonal elements are dirac delta function. Note that for any �1; �2 2 �

p
Tk
�
m̂E(�1)� m̂E(�2)

�
�
�
E[mE(�1)]� E[mE(�2)]

�
k

1 +
p
Tk�1 � �2k

�
p
T [krt � E[rt]kk�1 � �2k+rt � E[rT ]kj�1 � �2j]

1 +
p
Tk�1 � �2k

� krt � E[rT ]k+Op(rt) = Op(rt) (31)

Thus, (iii) can be satis�ed if there exists � > 0 and � > 0 such that P [krtk > �] < �. Let

�t(�i) = yt � q�t (�i), et = q�t (�1)� q�t (�2), and rt as
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rt = kr�q
�0
t 
̂

E
t �

�
t (�1)�r�q

�0
t 
̂

E
t �

�
t (�2)�r�q

�0
t 
̂

E
t rt(�1 � �2)k=k�1 � �2k

� k
̂Et kk1[�2t + et]� 1[�2t ]� et�tk=k�1 � �2k

� k
̂Et kket=k�1 � �2kkk1[�0t + et]� 1[�0t ]� et�tk=ketk (32)

Since rT (�1; �2) = 1
T

P
rt by de�nition, we will show that P [jrtj > �] < � for all t. By Assumptions

1 and 4 r�q
�0
t 
̂t = Op(1). Since q�t (�) is di¤erentiable, the mean value theorem and Assumption

2 implies that ket=k�1 � �2kkk is also bounded in probability. Thus, we have only to show that

Pr[k1[�2t + et] � 1[�2t ] � et�tk=ketk > �] < �. For given � > 0, � > 0, there exists e > 0 such that

ketk < e implies Pr[k1[�0t + et]� 1[�0t ]� et�tk=ketk > �] < �. Since q�t (�) is continuous on �, there

exist some � > 0 such that k�1 � �2k < � implies ketk < e which proves the inequality. �

Mathematical Appendix B: LTE Procedure

The Laplace type estimator (LTE) is obtained by the following 4-step procedure.

Step 1. Obtain an initial consistent estimator of �s using conventional equation-by-equation meth-

ods. Compute ~ft(�) and ~�st as described above to calculate ~Ts = 1
T

PT
t=1 ~�st~�

0
st, ~Vst = ~Fst ~T

�1
s , and

Ĥs.

Step 2. Let �sl be the lth element of �s. For each l = 1; : : : ; nkr, generate �l from N(j�l � �
(j)
sl j; �)

where the starting value �(0)s is the estimator in Step 1).

Step 3. Update �(j+1)sl from �
(j)
sl for j = 1; 2; : : : using

�(j+1) =

0BB@ � with probability p(�(j); �)

�(j) with probability 1� p(�(j); �)

1CCA ; (33)
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where

p(x; y) = inf

 
eLT (y)�(y)q(xjy)
eLT (x)�(x)q(yjx)

; 1

!
:

Step 4. Iterate Step 2 to Step 3 B times. The �nal estimator is the sample average given by

�̂ =
1

B

BX
j=1

�(j):

Note that � is updated every 100 times so that the rejection rate at Step 3 is approximately 50%.
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(a) Before shock (b) After a positive shock 

 

(c) Before shock (d) After a negative shock 
 

 

Figure 1. Shifts in distribution of  with respect to a shock  
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Figure 2. Simulated quantile impulse response  

  



 

 

Figure 3. Measured monetary policy shock series  

  



<Output Growth> <Inflation> 
 
Note: (total non-farm employees, consumer price index, R&R measure of monetary policy hock). Data are from Jan. 1973 
through Dec. 2000. Dotted lines represent 67% confidence interval.  

 
Figure 4. Mean impulse response to 100bp contractionary monetary policy shock 

 

 

  

 

Lower Quantile Upper Quantile 
Note: Difference of  from MIRF. 3 month average. (total non-farm employees, consumer price index, R&R 
measure of monetary policy hock). Data are from Jan. 1973 through Dec. 2000. Dotted lines represent 67% confidence 
interval. 

 

Figure 5. Quantile impulse response of growth to a contractionary monetary policy shock 
(  from MIRF) 



 

  

 

 

<Lower Quantiles> 

 

<Upper Quantiles> 
Note: Difference of  from MIRF. 3 month average. (total non-farm employees, consumer price index, R&R 
measure of monetary policy hock). Data are from Jan. 1973 through Dec. 2000. Dotted lines represent 67% confidence 
interval. 

 

Figure 6. Quantile impulse response of inflation to a contractionary monetary policy shock 
(  from MIRF) 

 

  



 

  

 

< contractionary shock> 

 

<expansionary shock > 
Note: Borders of shades represent the quantile impulse responses at 0.1, 0.3, 0.7, and 0.9, respectively. The initial point of 
each quantile impulse response function has been separated (for clear comparison) based on the corresponding quantiles of 
the standard normal distribution. 

 

Figure 7. Quantile impulse responses 
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